
Syntactic Completions with Material Obligations∗

DAVID MOON, University of Michigan, USA
ANDREW BLINN, University of Michigan, USA
THOMAS J. PORTER, University of Michigan, USA
CYRUS OMAR, University of Michigan, USA

Code editors provide essential services that help developers understand, navigate, and modify programs.
However, these services often fail in the presence of syntax errors. Existing syntax error recovery techniques,
like panic mode and multi-option repairs, are either too coarse, e.g. in deleting large swathes of code, or lead
to a proliferation of possible completions. This paper introduces tall tylr, an error-handling parser and
editor generator that completes malformed code with syntactic obligations that abstract over many possible
completions. These obligations generalize the familiar notion of holes in structure editors to cover missing
operands, operators, delimiters, and sort transitions.

tall tylr is backed by a novel theory of tile-based parsing, conceptually organized around a molder
that turns tokens into tiles and a melder that completes and parses tiles into terms using an error-handling
generalization of operator-precedence parsing. We formalize melding as a parsing calculus, meldr, that
completes input tiles with additional obligations such that it can be parsed into a well-formed term, with
success guaranteed over all inputs. We further describe how tall tylr implements molding and completion-
ranking using the principle of minimizing obligations.

Obligations o!er a useful way to sca!old internal program representations, but in tall tylr we go further
to investigate the potential of materializing these obligations visually to the programmer. We conduct a user
study to evaluate the extent to which an editor like tall tylr that materializes syntactic obligations might be
usable and useful, "nding both points of positivity and interesting new avenues for future work.

CCS Concepts: • Software and its engineering→ General programming languages.

Additional Key Words and Phrases: structure editing, error-handling parsing, operator precedence

ACM Reference Format:
David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar. 2025. Syntactic Completions with Material
Obligations. Proc. ACM Program. Lang. 9, OOPSLA2, Article 404 (October 2025), 27 pages. https://doi.org/10.
1145/3763182

1 Introduction
Programmers rely on editor services like syntax highlighting, code completion, and go-to-de"nition
for help with comprehending, modifying, and navigating programs in various stages of completion.
These services require analyzing the syntactic structure of the program being edited. The problem
is that, for typical grammars, most textual edit states do not successfully parse [26, 28]. For example,
consider the malformed program in Fig. 1A, written in an OCaml-like expression language (that
uses parentheses for function application, rather than spaces). A naively implemented parser would
simply stop upon encountering the "rst unexpected token, p2, at the end of the "rst line, leaving
∗A version of this paper with errata and a complete appendix is available at https://arxiv.org/abs/2508.16848.

Authors’ Contact Information: David Moon, University of Michigan, Ann Arbor, USA, dmoo@umich.edu; Andrew Blinn,
University of Michigan, Ann Arbor, USA, blinnand@umich.edu; Thomas J. Porter, University of Michigan, Ann Arbor, USA,
thomasjp@umich.edu; Cyrus Omar, University of Michigan, Ann Arbor, USA, comar@umich.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART404
https://doi.org/10.1145/3763182

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

https://orcid.org/0000-0002-1081-2235
https://orcid.org/0000-0001-6938-7379
https://orcid.org/0009-0000-1809-8382
https://orcid.org/0000-0003-4502-7971
https://doi.org/10.1145/3763182
https://doi.org/10.1145/3763182
https://arxiv.org/abs/2508.16848
https://orcid.org/0000-0002-1081-2235
https://orcid.org/0000-0001-6938-7379
https://orcid.org/0009-0000-1809-8382
https://orcid.org/0000-0003-4502-7971
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763182
https://www.acm.org/publications/policies/artifact-review-and-badging-current

404:2 David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar

Fig. 1. (A) A malformed editor state, with
the first unexpected token underlined in red.
(B) Regions skipped by a simple panicking
parser, highlighted in red. (C) Some possible
textual repairs for the first line generated
by a conventional error-correcting parser.

the program unparsed and unanalyzable by downstream editor services. To address this problem,
modern parsers attempt to recover from and continue parsing around malformed syntax, but often
leave much to be desired. Let us consider how contemporary methods might recover from the
unexpected token p2.

A simple recovery method known as “panic mode” [3, 16] drops tokens heuristically around the
error until parsing can resume—in this case, as shown in Fig. 1B, a simple panicking parser might
drop the "rst four lines of code because of the various parse errors on those lines, then perhaps
recover more granularly on the "nal line by ignoring the dangling minus sign. While better than
nothing and relatively easy to implement, this approach is liable to ignore large windows around
error locations, leaving the programmer with limited or incorrect assistance where they may need
it most [10]. For example, the dropped lines in Fig. 1B would lead a type error reporting service to
mark the uses of x1, y1, and y2 unbound (in contrast to what a human would likely conclude).

More sophisticated error recovery methods consider a range of possible repairs around the error
location. Fig.1C shows some possible repairs for the "rst line of code in Fig.1A. The "rst three repairs
show how this method reduces dropped input (i.e. deleted tokens) compared to a panicking parser.
On the other hand, the next four completion-only repairs show how this method must enumerate
all tokens that play similar structural roles—in this case, in"x operators on patterns—which can
lead to a combinatorial explosion as additional insertions, deletions, and larger repair windows
are considered [7, 10]. To select from these possible repairs, most parsers use ad hoc heuristics
[11, 14]. The heuristically chosen repair is generally not communicated to the programmer, leaving
them only indirect clues in the behavior of downstream editor services. Having the programmer
disambiguate between possible repairs interactively can cause information overload due to the
number of possible completions [20].
This paper introduces tall tylr, a parser and editor generator that performs syntax repair by

syntactic completion (but not deletion) in a grammar enriched with obligations. This approach can
be used to determine the internal program representation within an editor or language server (and
indeed we expect this to be a common application of these ideas), but in this paper we go further
to investigate the potential of materializing these obligations visually to the programmer.

Fig. 2. The syntactic completion of the program from Fig. 1
in tall tylr, our tile-based editor.

The screenshot in Fig. 2 shows how
tall tylr repairs the program from
Fig. 1A. On Line 1, tall tylr completes
the user-inserted tokens fun (p1 p2 by
materializing three obligations. The "rst
obligation, , is an in!x obligation, i.e.
it ranges over many possible in"x oper-
ators in pattern position. The remaining
two obligations,) and =>, as well as those
on Line 2, are ghost obligations that serve
to complete the partially written syntactic forms. The user can accept these suggested locations by

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

Syntactic Completions with Material Obligations 404:3

placing the cursor on these faded out tokens and pressing the Tab key or typing over them explicitly.
If they wish to place them elsewhere, the ghost obligations can be ignored and the user can type
these obligations elsewhere; the ghost obligations are removed when no longer necessary. On Lines
3 and 5, the user has omitted operands of various syntactic sorts: one pattern, one type, and two
expressions. tall tylr materializes operand obligations (a.k.a. holes), written and colored by
syntactic sort, to stand for the missing operands. Finally, on Line 4, , is a sort transition obligation
that indicates that there is a missing transition from the pattern sort (in blue) to the type sort
(in purple), because in this language the token -> can appear only in types. This collection of
obligations captures the di!erent ways a program may be incomplete. We expand on this visual
taxonomy with additional examples from the user’s perspective in §2.

Each token and obligation in tall tylr has a color and a shape, collectively a mold. We refer to
a token or obligation equipped with a mold as a tile. In particular, the color indicates the syntactic
sort of term being considered. The shape indicates the hierarchical relationship between a token
and its neighbors. For example, the convex tip on the left of the let token in Fig. 2 indicates that it
is the beginning of a term, and the concave tip on its right indicates that a child term is expected to
its right. Tips are visualized only for the term at the cursor (which is shown as a red angle in Fig. 2
to conform to the shape of its adjacent token) to avoid the visual clutter associated with nested
block-based visualizations like those in systems like Scratch [6, 22].
Underlying this visual taxonomy is a novel theory of parsing that we dub tile-based parsing.

Tile-based parsing departs from the predominant item-based approach of the LL/LR methods
and instead builds on the token-based perspective of operator-precedence (OP) parsing as "rst
described by Floyd [13]. OP parsing enjoys the bounded context property [16] that makes it possible
to maximally parse any subrange of input knowing only its single-token delimiters, an attractive
property for modeling and analyzing program edit states. On the other hand, OP parsing is also
known for its limited grammar class, owing to di#culties reusing the same token in di!erent
structural roles (e.g. - for both in"x subtraction and unary negation). With tile-based parsing,
we propose splitting the overall problem of parsing into a top-down, context-dependent molder
that molds tokens into tiles, thereby distinguishing one structural use of a token from another;
and a bottom-up, bounded-context melder of tiles that extends OP parsing with obligation-based
syntactic completions.
Where error handling is typically an afterthought in existing parsing methods, it emerges in

tile-based parsing as a natural generalization of the core OP parsing method. In particular, we
generalize the single-step precedence comparisons in OP parsing to multi-step precedence walks in
melding, where the intermediate steps between the comparands constitute possible completions
between them. In §3, we precisely specify melding as a parsing calculus calledmeldr. In addition to
precedence walks, we describe in §3.3.2 how meldr “injects” the given grammar with additional
grout forms that bu!er the various inconsistencies that may arise between bottom-up reductions
and top-down expectations. Along the way, we present in §3.1 a new parser-independent semantics
for precedence annotations that generalizes and uni"es prior accounts.

meldr describes a nondeterministic parser of tiles, leaving many decisions up to the implementa-
tion regarding how tiles are molded and completions are chosen. In §4, we describe the principle of
minimizing obligations and additional heuristics that guide these decisions in tall tylr. Finally,
we evaluate our overall design with a user study in §5, investigating both code insertion and
code modi"cation tasks. We discover our design of materialized obligations has both promise and
demand, but more design work is needed to give the programmer more control over their placement
and removal, especially when modifying existing code.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

404:4 David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar

2 Design Overview
We begin with a user-facing summary of how tall tylr operates in various common editing
scenarios that demonstrate each form of obligation and how it is materialized to the user.
tall tylr is a parser and editor generator, i.e. it can be instantiated with various grammars. In

this section, we will write programs in a simple expression-oriented programming language, Hazel
[27]. Hazel is a near-subset of OCaml. One notable deviation is the use of post"x parentheses, 𝐿(𝐿),
instead of in"x space, 𝐿 𝐿 , for function application. This allows us to demonstrate how tall tylr
handles adjacency when whitespace is not accepted by the grammar as an in"x operator.

2.1 Operand Obligations

(a)
2
!↢

(b)
!
!↢

(c)
+
!↢

(d)
!
!↢

(e)
3 ! *
!!!!!↢

(f)

Fig. 3. Basic expression insertion in tall tylr, demonstrating operand obligations and term decorations.

We begin with an empty editor bu!er in Fig. 3(a). The root sort of Hazel is expression, and no
expression has been entered, so tall tylr repairs the empty bu!er to a single operand obligation,
or simply hole, of that sort. Holes have convex tips on both sides, and the user’s caret (in red)
appears angled when on either side of the hole to emphasize its shape.
We next type the character 2 , which causes the hole to be “"lled” with the number literal 2

in Fig. 3(b). Atomic operands also have convex tips on both sides. The sort (here, expression) and
the shape, i.e. the convexity of the tips on either side, are collectively called a mold and a token or
obligation equipped with a mold is called a tile. Visually, the editor indicates the sort of a tile using
color (here, expressions are grey) and the shape as shown above when the caret is on the tile. Next,
we type a space, ! , causing a space character to be inserted and the caret to shift right in Fig. 3(c).
The caret is no longer on a tile, so no visual indications appear and the caret straightens out. Note
that tall tylr only supports whitespace-insensitive grammars as of this writing.
Next, we type + . In the Hazel grammar, the + token is only used as an in"x operator, so the

molder assigns it a shape with concave tips on both sides, as shown visually in Fig. 3(d). tall tylr
must then perform syntax repair, because 2 + is not accepted by the grammar. To do so, tall tylr
performs a precedence walk. We will describe precedence walks precisely later in the paper, but
for now, let us develop some intuition. The idea is that we need to walk from the current token, +,
to the following token, which in this case is an implicitly included end-of-bu!er token. The only
walk which allows this is one that traverses the right operand of the form 𝐿 + 𝐿 . Consequently,
tall tylr repairs the syntax by inserting an expression-sorted operand obligation, i.e. hole, as
shown. For convenience, tall tylr also automatically inserts the space between the operator and
the hole. When we subsequently type ! , this automatically inserted space is “consumed” rather
than causing the insertion of a second space, as shown in Fig. 3(e).
Finally, we continue typing as shown, resulting in Fig. 3(f). Operator sequences are parsed

according to Hazel’s precedences and associativities. Notice in both Fig. 3(d) and Fig. 3(f) that tall
tylr underlines the associated operands when the caret is on a tile to visually communicate the
structure of the overall term. Notice also that completed terms are always convex on both sides.
Indeed, a user’s mental model can simply be that tall tylr inserts obligations to maintain visual
convexity.

2.2 Infix Obligations
Starting from the editor state in Fig. 4(a), we press backspace, , deleting the + tile. Textually, this
would result in the operands 2 and 3 appearing adjacent to one another, which is not accepted by

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

Syntactic Completions with Material Obligations 404:5

the Hazel grammar. There are many possible walks between adjacent terms—one for each of the
in"x operators—so tall tylr abstracts over them by inserting an in!x obligation, a.k.a. an operator
hole, as shown in Fig. 4(b). In"x obligations have the lowest precedence.

(a)

!!↢

(b)

Fig. 4. Adjacent operands are connected by infix
obligations in tall tylr.

One way to think about this mechanism is that
operand obligations arise when one term is ex-
pected but zero terms appear, whereas in"x obli-
gations arise when one term is expected but many
adjacent terms appear, as is often the case tran-
siently during edits.

2.3 Molding Ambiguity

(a)
x !
!!!↢

(b)

Fig. 5. The minus sign has multiple molds.
The mold is chosen to minimize obligations.

The situation becomes more interesting if we use the
- token, because in the Hazel grammar this token can
appear both as an in"x operator (subtraction) and as a
pre"x operator (negation). These correspond to di!erent
molds. For example, in Fig. 5(a), the - token before y is
molded as a pre"x operator, visualized with a convex tip
on the left and a concave tip on the right as shown.

If in this position, we type x followed by ! (to move the caret over the automatically inserted
space), tall tylr remolds the token into the corresponding in"x operator as shown in Fig. 5(b).
The reason is tall tylr’s novel approach to disambiguation: tall tylr always selects the mold
which locally minimizes the number of obligations that must be inserted. Retaining the pre"x
mold would have required also inserting an in"x obligation, whereas the in"x mold requires no
obligations.
Although this approach requires considering alternative token moldings as tokens are encoun-

tered, we note that there are generally only a few tokens in a typical grammar which can have
multiple possible moldings. In the Hazel grammar, only - and (have this property. Traditional
operator precedence parsing cannot handle such grammars, but using a molder separate from
the core parsing algorithm that makes decisions based on repair costs allows us to overcome this
expressiveness limitation while retaining a relatively simple core parsing algorithm.

Note that formally, a mold is not simply a shape and sort, but rather a zipper into the grammar,
so the molder is also responsible for resolving other parsing ambiguities that might arise as well,
e.g. the famous “dangling else” problem in imperative languages. This is in contrast to approaches
where the parser resolves these ambiguities, e.g. by favoring shifts over reduces. We leave to future
work the problem of declaratively specifying disambiguation policies in this setting. We only work
with unambiguous grammars in the remainder of the paper.

2.4 Ghost Obligations
(a)

l e t !
!!!!!!↢

(b)
x ! = or
!!!!!!!!!↢

(c)

Fig. 6. Ghost obligations are inserted for mixfix forms in tall tylr.

So far, our examples have only used in"x operators. Introducingmix!x operators requires enriching
our language of obligations to handle mix"x delimiters that have not yet been inserted.

For example, starting from an empty bu!er in Fig. 6(a), we can insert a let expression by typing
l e t ! . This causes insertion of ghost obligations, shown in gray in Fig.6(b). These obligations are

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

404:6 David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar

again determined by computing a precedence walk from the inserted token to the next token. When
walking over a token that is not explicitly in the editor state, we can include it as a ghost obligation
in the corresponding completion. We again choose the completion that minimizes obligations. The
user can continue by entering a variable to "ll the pattern hole at the caret and, when they reach
the =, they can either press tab, , or type over the ghost character(s), here by entering = . Either
choice will result in the state shown in Fig. 6(c). Note that the term structure is visualized despite
the missing delimiter.
When inserting a let expression in the middle of an existing program, tall tylr needs to

heuristically decidewhere to place the ghost obligations. The heuristic we use is is based primarily on
newline placement in the bu!er, summarized by the example in Fig. 7. If we insert the let expression

(a)
l e t !
!!!!!!↢

(b)

(c)
l e t !
!!!!!!↢

(d)

Fig. 7. Ghost obligation placement is chosen heuristically,
here based on newline locations.

(a)
i n !
!!!!!↢

(b)

Fig. 8. Ghost obligations can be ignored and are cleaned up
if entered elsewhere.

immediately before existing code on the
same line, that code is placed in the "rst
child position of the same sort as shown
in Fig. 7(a-b). If instead we enter the let
expression on a blank line, subsequent
lines are placed in the last child position
of the same short as shown in Fig. 7(c-d).
If the user’s intent di!ers from this

heuristic placement, they can ignore the
ghost obligations and insert the obliga-
tion explicitly where they intend. Given
the state in Fig. 8(a), if the user enters in
at the end of the bu!er, tall tylr would
clean up the ghost in and restructure the
code as shown in Fig.8(b). Note that tall
tylr automatically manages indentation.

2.5 Sort Transition Obligations
Some syntactic forms are legal only when entering terms of a particular sort. For example, in Hazel,
the arrow operator, ->, can only appear in types. If we enter the arrow in pattern position, as shown
in Fig. 9(a), tall tylr inserts obligations indicating that there needs to be a sort transition from
the pattern sort to the type sort, as shown in Fig. 9(b). If there were additional text on the right that
could be parsed as a pattern, a sort transition “back” on the right side would also appear.

(a)
- > !
!!!!!↢

(b)

Fig. 9. Sort transition obligations are needed when entering forms that are not sort-correct.

2.6 Unmolded Tokens

Fig. 10. Unrecognized tokens are le! unmolded,
and therefore cannot fulfill obligations.

Finally, some tokens are not recognized by
the grammar at all. To handle these, the
molder marks them as unmolded tokens and
treats them like whitespace or comments, i.e. they do not have a shape and so do not participate in
obligation insertion. For example, in Hazel, there is no ! token, so tall tylr simply marks it in red

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

Syntactic Completions with Material Obligations 404:7

and ignores it as shown in Fig. 10. Notice that no matter where the ! token appears, the operand
obligation remains un"lled.

3 meldr
We now present an error-handling parser calculus, called meldr, that describes how to complete
token sequences with additional tokens such that they can be parsed into grammatical terms. Given
a language grammar, whose terminal symbols we call tiles, we “inject” it with additional grout
forms that either stand in for missing terms or else wrap sort-inconsistent and extraneous terms.
From this grout-injected grammar, we generate an error-handling parser of tile sequences that
completes its input with grout and additional requisite tiles (manifesting as ghosts in tall tylr
(§2.4)) such that it can be parsed. By "rst relaxing grammaticality with grout, we ensure that the
generated tile parser is total over all inputs (Theorem 3.4).

As a substrate for these ideas, we generalize and unify two prior accounts of operator precedence:
Aasa’s semantics for precedence annotations in grammars [1] and Floyd’s seminal introduction of
operator-precedence parsing (OP parsing) [13]. The two works have related but complementary
scopes: Aasa describes how precedence annotations act as "lters on the set of valid derivation trees
of the underlying grammar, as well as how to elaborate the annotated grammar into an unannotated
one; meanwhile, Floyd begins with an unannotated grammar and describes how to derive a set
of precedence relations between terminal symbols that can be used to steer a bottom-up parser. In
§3.1, we specify a new elaboration from annotated grammars G to unannotated grammarsH that
simpli"es Aasa’s version and generalizes it to allow for arbitrary mix"x forms of varying sorts in
G. To demonstrate correctness, we show in §3.1.4 that Floyd’s precedence relations derived fromH
cohere as expected with the annotations in G (Theorem 3.1).

Next, we generalize OP parsing to handle errors using completion-only repair. After reviewing
Floyd’s original parsing method and noting the various ways that it can “go wrong” in §3.2, we
present our error-handling variation in §3.3. Among other things, our approach generalizes the
single-step precedence comparisons between neighboring input tokens that steer an OP parser
to multi-step precedence walks, where the intermediate steps constitute a possible completion
between the tokens.
This approach alone is not quite su#cient to guarantee a successful parse across all grammars

and inputs—moreover, in practice, it would require the parser to make many heuristic choices
between structurally identical tile completions. To remedy these issues, we describe in §3.3.2 how
to inject grout forms into the translated grammarH, which serve as fallbacks when no tile-only
completion exists, and also as natural defaults when there are many possible choices. Given these
fallbacks, we show that the generated parser is sound and total over all inputs (Theorem 3.4).

option 𝑀? ::= ⌐)︃ ●𝑀
sequence 𝑀 ::= ⋊)︃ 𝑀𝑀

Notation. Throughout this section, we will use the notation on
the right for options and sequences given an element type 𝑀 . Given
a judgment form 𝑁 𝑀 , we will write 𝑁 𝑀? to mean either 𝑀? = ⌐ or
else 𝑀? = ●𝑀 such that 𝑁 𝑀 holds. Similarly, given 𝑁 𝑀 𝑂 , we will write 𝑁 𝑀? 𝑂? to mean either 𝑀? = ⌐
and 𝑂? = ⌐ or else 𝑀? = ●𝑀 and 𝑂? = ●𝑂 such that 𝑁 𝑀 𝑂 holds.

3.1 Elaborating Precedence Annotations
3.1.1 Precedence-Bounded Grammars. Our calculus is parametrized by a language grammar G in
EBNF form with precedence annotations, what we call in this work a precedence-bounded grammar
(PBG). Compared to ordinary context-free grammars, where precedence must be encoded in tedious
towers of dependent production rules, PBGs allow language forms of the same semantic sort (e.g.
expressions vs patterns vs types) to be organized under a single named entity, leading to more

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

404:8 David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar

tile 𝑃 ∈ T

sort 𝑄 , 𝑅 ∈ S ⊇ {𝑅}
symbol 𝑆,𝑇 ∶∶= 𝑃)︃ 𝑅
regex 𝑈 ∶∶= 𝑉)︃ 𝑆)︃ 𝑈)︃)︃)︃𝑈)︃ 𝑈 ⋊𝑈)︃ 𝑈⌐

precedence 𝑊,𝑋,𝑌,𝑍 ∈ P = N ⋉ {&,⧖}
PBG G ∈ S ↢ P ↢ 𝑈

Fig. 11. Syntax of precedence-bounded grammars

terminal 𝑎 ∶∶= ()︃ 𝑃)︃)

nonterminal 𝑏,𝑐 ∶∶= 𝐿𝑅𝑀

symbol 𝑑 ∶∶= 𝑎)︃ 𝑐
CFG H ∈ {𝑐 ⇒ 𝑑}

Fig. 12. Syntax of elaborated
context-free grammars

natural and concise grammar de"nitions. By having the author explicitly specify the language’s
sorts, PBGs also help us generate a minimal set of semantically meaningful grout forms.

THZ = [︃ let = in ... (,)]︃

⋉ [︃ : 𝑒𝑓𝑄 (,)]︃

⋉ [︃ Num (,)]︃ SHZ = {!̂, ",#}

GHZ =

⌊︃
⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃
⌈︃
⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃
⌉︃

! ↦ 0 ↦ let ⋊ " ⋊ = ⋊ ! ⋊ in ⋊ !
1≻ ↦ ! ⋊ (+)︃)︃)︃ -) ⋊ !
2≻ ↦ ! ⋊ (*)︃)︃)︃ /) ⋊ !
3 ↦ 𝑋𝑔𝑊)︃)︃)︃ 𝑒𝑓𝑄

)︃)︃)︃ (⋊ ! ⋊ (, ⋊ !)⌐⋊)
" ↦ 0 ↦ " ⋊ : ⋊#

1 ↦ 𝑒𝑓𝑄)︃)︃)︃ (⋊ " ⋊ (, ⋊ ")⌐⋊)
↦ 0 ↦ Num)︃)︃)︃ (⋊# ⋊ (, ⋊#)⌐⋊)

{︃
⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃
}︃
⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃⌋︃
⟨

Fig. 13. A PBG GHZ for a small expression-oriented lan-
guage. Sorts consist of expressions (!) in grey, pa"erns
(") in blue, and types (#) in purple. Tiles are distin-
guished by text, shape, and color-coded sort.

"!" "!1 + 2!")︃ "!2 * 3!"

"!1 "!1 + 2!1)︃ "!2 * 3!1

"!2 "!2 * 3!2

"!⋊

2!" 2!2 * 3!"

3!"

⋊!" let """ = "!" in 1!"

⋊!⋊ 𝑋𝑔𝑊)︃ ("!")

("!" , "!"))︃ ...

""⋊ ""1 : "#"
⋊"⋊ 𝑒𝑓𝑄)︃ ("""))︃ ...

⋊#⋊ Num)︃ ("#"))︃ ...

Fig. 14. An excerpt of the CFGHHZ elaborated
(Fig. 17) from GHZ (Fig. 13). The production rules
are arranged and color-coded by whether each
is elaborated by reduction or by tightening.

The syntax of PBGs is given in Fig. 11. A PBG G is a partial function mapping a sort 𝑅 ∈ S and
precedence 𝑌 ∈ P to a regex 𝑈 over symbols 𝑆 , each either a tile 𝑃 ∈ T or a sort 𝑅 ∈ S . We assume
that S includes a designated start sort 𝑅 . We assume P = N⋉{&,⧖} includes the natural numbers N
for precedence levels assigned in G as well as minimum & and maximum ⧖ precedence levels that
are reserved for internal use. We further assume that P is equipped with ordering relations ≺𝑁 ,≻𝑁
that abstract the details of associativity for each sort 𝑅 ∈ S . For example, 5 ≺! 5 would encode that
in"x operators at precedence level 5 of sort ! are right-associative—otherwise, outside of re$exive
pairs, these relations coincide with the usual ordering relations on natural numbers. For all sorts
𝑅 ∈ S , we assume 𝑌 ≺𝑁 ⧖ ≻𝑁 𝑌 and 𝑌 ≻𝑁 & ≺𝑁 𝑌 for all other 𝑌 ∈ N.

Fig. 13 gives a concrete PBG GHZ encoding an excerpt of Hazel expressions, patterns, and types,
which we will use as a running example throughout the rest of the paper. Here, each precedence
level 𝑌 ∈ N of sort 𝑅 is optionally tagged with the relation ⊗ ∈ {≺𝑁 ,≻𝑁} that applies to the re$exive
pair 𝑌 ⊗ 𝑌 , if any—in this case, levels 1≻ and 2≻ of sort ! are marked as left-associative, i.e. 1 ≻! 1

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

Syntactic Completions with Material Obligations 404:9

and 2 ≻! 2. Meanwhile, the tiles are distinguished by their shape and color (gray for expressions,
blue for patterns, purple for types) in addition to their text.
A regex 𝑈 is either 𝑉 , matching the empty string; a symbol 𝑆 ; a choice 𝑈𝑂)︃)︃)︃ 𝑈𝑃 ; a concatenation

𝑈𝑂 ⋊𝑈𝑃 ; or a Kleene star 𝑈⌐. Its language !𝑈" of matching symbol strings 𝑆 is de"ned as follows:

!𝑉" = {⋊}
!𝑆" = {𝑆}

!𝑈𝑂)︃)︃)︃ 𝑈𝑃" = !𝑈𝑂" ∪ !𝑈𝑃"
!𝑈𝑂 ⋊𝑈𝑃" = {𝑆𝑂𝑆𝑃)︃ 𝑆𝑂 ∈ !𝑈𝑂", 𝑆𝑃 ∈ !𝑈𝑃"}

!𝑈⌐" = ⩀
𝑄∈N!𝑈𝑄" where 𝑈0 = 𝑉

and 𝑈𝑄+1 = 𝑈 ⋊𝑈𝑄

A G-form is a symbol string 𝑆 ∈ !G(𝑅,𝑌)" for any 𝑅 ∈ S,𝑌 ∈ P . To make use of operator-precedence
parsing techniques, we assume that every G-form is in operator form [13]:

A$$%&"#’() 1 (O"!*+#(* F(*&). There exist no sorts 𝑅𝑂, 𝑅𝑃 ∈ S and regex G(𝑅,𝑌) such that
...𝑅𝑂𝑅𝑃 ... ∈ !G(𝑅,𝑌)".

In other words, every G-form may be written in the form 𝑅?0[𝑃𝑅𝑅?𝑅+1]0≤𝑅≤𝑄 . Greibach [15] showed
that every CFG can be normalized to a strongly equivalent one in operator form.

3.1.2 Context-Free Grammars. We assign meaning to the precedence-annotated grammar G by
elaborating it to an unannotated context-free grammar (CFG)H, whose syntax is given in Fig. 12.
An elaborated CFG H is a (possibly in"nite) set of production rules 𝑐 ⇒ 𝑑 , each mapping a
nonterminal 𝑐 to a "nite sequence 𝑑 of symbols—we will refer to 𝑐 and 𝑑 as the rule’s producer
and product. Each symbol 𝑑 is either a terminal 𝑎 or a nonterminal 𝑐 . A terminal symbol 𝑎 is either
a tile 𝑃 or a root delimiter, (or), marking the start or end of input. Meanwhile, a nonterminal is a
precedence-bounded sort 𝐿𝑅𝑀 , where 𝑌,𝑍 ∈ P will serve as constraints from the left and right sides of
the nonterminal in the overall production tree. Fig. 14 shows an excerpt of the CFGHHZ elaborated
from GHZ, the process of which we discuss in §3.1.4.
We have specialized the symbols here to serve as our elaboration outputs, but their rewriting

semantics are standard: given a production rule 𝑐 ⇒ 𝑑 , we say that the symbol string 𝑑𝑂𝑐𝑑𝑃
produces the string 𝑑𝑂𝑑 𝑑𝑃 , written 𝑑𝑂𝑐𝑑𝑃 ⇒ 𝑑𝑂𝑑 𝑑𝑃 reusing the production rule syntax. A
production sequence 𝑑0 ⇒ 𝑑1 ⇒ ... from the designated start string 𝑑0 = (

"𝑅") is called a
derivation; the language of a CFG collects all of its derivable strings.

3.1.3 Precedence Comparisons. Given a CFG, we may generate a collection of precedence compar-
isons that classify derivation patterns between neighboring terminals. Each comparison 𝑎𝑂 ∧𝑆? 𝑎𝑃
means there exists a derivable string with the substring 𝑎𝑂𝑏?𝑎𝑃 , which consists of neighbors 𝑎𝑂,𝑎𝑃
that are either adjacent (𝑏? = ⌐) or separated (𝑏? = ●𝑏) by a nonterminal 𝑏 . Floyd’s original de"ni-
tion [13] does not surface the operator index 𝑏?, whose omission we will later show contributes to
an unsound parsing method (§3.2.2), and whose use in our resolution we describe in §3.3. Until
then, we will similarly omit it from the notation 𝑎𝑂∧𝑎𝑃—note this is di!erent from assuming 𝑏? = ⌐,
which we will always notate explictly 𝑎𝑂 ∧○ 𝑎𝑃 .

The comparison operator ∧ ∈ {⋖,≐,⋗} indicates in what relative order the neighbors 𝑎𝑂,𝑎𝑃
were "rst produced in the derivation. Fig. 16 shows an excerpt of the precedence comparisons
forHHZ (Fig. 14). The derivation "!" ⇒ "!1 + 2!" ⇒ "!1 + 2!2 * 3!" tells us + ⋖ * ⟩“ + binds
less tightly than * ”⧸︃ since + is produced before its neighbor * . Meanwhile, the derivation
"!" ⇒ ⋊!⋊ ⇒ ("!") tells us (≐) ⟩“ (matches) ”⧸︃ since neighbors (and) are
produced together. Keep in mind that the written order of arguments 𝑎𝑂,𝑎𝑃 in each comparison
𝑎𝑂 ∧ 𝑎𝑃 re$ects their sequential order in the derived string, so we should not generally expect
𝑎𝑂 ⋖ 𝑎𝑃 to be equivalent to 𝑎𝑃 ⋗ 𝑎𝑂 , nor for ≐ to be symmetric.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

404:10 David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar

3.1.4 Precedence Elaboration. Elaboration turns an annotated PBG G into an unannotated CFG
H whose nonterminals internalize relevant bounding annotations. Governing its design is the
expectation that precedence comparisons 𝑃𝑂 ∧ 𝑃𝑃 between tiles inH mirror, when relevant, numeric
comparisons between the tiles’ backing annotations in G (Theorem 3.1).

T,!(*!& 3.1 (A))(#+#’()-C(&"+*’$() C(,!*!).!). For all sorts 𝑅 , precedence levels 𝑌𝑂,𝑌𝑃 ,
and tiles 𝑃𝑂, 𝑃𝑃 such that ...𝑃𝑂𝑅 ∈ !G(𝑅,𝑌𝑂)" and 𝑅𝑃𝑃 ... ∈ !G(𝑅,𝑌𝑃)", the following equivalences hold:

𝑃𝑂 ⋖ 𝑃𝑃 ⇐⇒ 𝑌𝑂 ≺𝑁 𝑌𝑃 𝑃𝑂 ⋗ 𝑃𝑃 ⇐⇒ 𝑌𝑂 ≻𝑁 𝑌𝑃

To motivate our design (Fig. 17), it is instructive "rst to consider the issues with simpler
alternatives—in particular, elaborating to nonterminals with fewer than two bounds. If we elabo-
rated the PBG G to a CFGH0 in which the nonterminals were plain unbounded sorts 𝑅 , the best we
could do is a trivial elaboration that simply ignores the precedence annotations in G:

H0 ≜ {𝑅 ⇒ 𝑆)︃ 𝑆 ∈ !G(𝑅,𝑌)",𝑌 ∈ P, 𝑅 ∈ S}
H0 allows for problematic derivations like !⇒ ⧹︃! * !⧸︁⇒ ⧹︃⧹︃! + !⧸︁ * !⧸︁, problematic because it
witnesses the unwanted comparison + ⋗ * ⟩“ + binds more tightly than * ”⧸︃.

A better approach—similar in e!ect to that of Danielsson and Norell [8] and of Klint and Visser
[19]—would use singly-bounded nonterminals 𝑅𝐿 and limit their productions to G-forms of equal
or stronger precedence: H1 ≜ {𝑅𝐿 ⇒ ⃥︁𝑆⎛𝐿)︃ 𝑆 ∈ !G(𝑅,𝑍)",𝑌 ⪯𝑁 𝑍, 𝑅 ∈ S}
where ⃥︁𝑆⎛𝐿 lifts each sort symbol 𝑅 ∈ 𝑆 to some suitably bounded nonterminal.

(a) !" ⇒ ⧹︃!2 * !3⧸︁⇒ ⧹︃⧹︃!1 + !2⧸︁ * !3⧸︁
(b) !" ⇒ ⧹︃!2 * !3⧸︁⇒ ⧹︃⧹︃ let "" = !" in !0⧸︁ * !3⧸︁
(c) !" ⇒ ⧹︃!2 * !3⧸︁⇒ ⧹︃!2 * ⧹︃ let "" = !" in !0⧸︁⧸︁

This approach properly rules out unwanted
derivations on the left like (a) ⟩for witnessing
+ ⋗ * ⧸︃ and (b) ⟩ in ⋗ * ⧸︃, since the
left argument !2 of * cannot produce the
+ - and let -forms of weaker precedence

levels 1 and 0. However, H1 is overly conservative: it also rules out acceptable derivations like
(c) ⟩ * ⋖ let ⧸︃. Ultimately the purpose of precedence annotations is to resolve choices between

comparison ∧ ∶∶= ⋖)︃ ≐)︃ ⋗

𝑎𝑂 ⌐𝑆? 𝑎𝑃 𝑎𝑂 compares with 𝑎𝑃
(over 𝑏?)

Prec-LT
𝑎𝑂 ∨ 𝑐 𝑐 ⇒⌐ 𝑏?𝑎𝑃 ...

𝑎𝑂 ⋖𝑆? 𝑎𝑃

Prec-EQ
𝑐 ⇒ ...𝑎𝑂𝑏?𝑎𝑃 ...

𝑎𝑂 ≐𝑆? 𝑎𝑃

Prec-GT
𝑐 ⇒⌐ ...𝑎𝑂𝑏? 𝑐 ∨ 𝑎𝑃

𝑎𝑂 ⋗𝑆? 𝑎𝑃

Fig. 15. Precedence comparisons

𝑎𝑂
𝑎𝑃
) let = in + * () 𝑋𝑔𝑊 : () Num

(≐ ⋖ ⋖ ⋖ ⋖ ⋖

let ≐ ⋖ ⋖

= ⋖ ≐ ⋖ ⋖ ⋖ ⋖

in ⋗ ⋖ ⋗ ⋖ ⋖ ⋖ ⋗ ⋖

+ ⋗ ⋖ ⋗ ⋗ ⋖ ⋖ ⋗ ⋖

* ⋗ ⋖ ⋗ ⋗ ⋗ ⋖ ⋗ ⋖

(⋖ ⋖ ⋖ ⋖ ≐ ⋖

) ⋗ ⋗ ⋗ ⋗ ⋗

𝑋𝑔𝑊 ⋗ ⋗ ⋗ ⋗ ⋗

: ⋗ ⋗ ⋗ ⋖

(⋖ ⋖ ≐

) ⋗ ⋗ ⋗

Num ⋗ ⋗

Fig. 16. An excerpt of precedence comparisons 𝑎𝑂⌐𝑎𝑃 forHHZ (Fig.14)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

Syntactic Completions with Material Obligations 404:11

𝑑 ∼ 𝑆 CFG symbol 𝑑 is consistent
with PBG symbol 𝑆

𝑃 ∼ 𝑃 𝐿𝑅𝑀 ∼ 𝑅

𝑐 ↢ 𝑑 Nonterminal 𝑐 produces symbols 𝑑

Produce-Subsume
𝑐 ⇐ 𝑑

𝑐 ⇒ 𝑑

Produce-Tighten
𝑌 ≼𝑁 𝑊 𝑋 ≽𝑁 𝑍

𝐿𝑅𝑀 ⇒ 𝑇𝑅𝑈

𝑐 ⇐ 𝑑 Symbol sequence 𝑑 reduces to nonterminal 𝑐

PElab-Operand (𝑕 ≥ 0)
[𝑆𝑅]0≤𝑅≤𝑄 ∈ !G(𝑅,◻)" [𝑑𝑅 ∼ 𝑆𝑅]0≤𝑅≤𝑄

𝑆0 ≠ 𝑅 ≠ 𝑆𝑄
⋊𝑅⋊ ⇐ [𝑑𝑅]0≤𝑅≤𝑄

PElab-Infix (𝑕 ≥ 0)
[𝑆𝑅]0≤𝑅≤𝑄 ∈ !G(𝑅,𝑊)" [𝑑𝑅 ∼ 𝑆𝑅]0≤𝑅≤𝑄

𝑑0 =
𝐿𝑅𝑈𝐿 𝑈𝑀𝑅𝑀 = 𝑑𝑄
𝑋𝑂 ≻𝑁 𝑊 ≺𝑁 𝑋𝑃

min(𝐿,𝑇)𝑅min(𝑇,𝑀)
⇐ [𝑑𝑅]0≤𝑅≤𝑄

PElab-Prefix (𝑕 ≥ 1)
[𝑆𝑅]0≤𝑅≤𝑄 ∈ !G(𝑅,𝑊)" [𝑑𝑅 ∼ 𝑆𝑅]0≤𝑅≤𝑄

𝑆0 ≠ 𝑅
𝑈𝑀𝑅𝑀 = 𝑑𝑄

𝑊 ≺𝑁 𝑋𝑃
⋊𝑅min(𝑇,𝑀)

⇐ [𝑑𝑅]0≤𝑅≤𝑄

PElab-Postfix (𝑕 ≥ 1)
[𝑆𝑅]0≤𝑅≤𝑄 ∈ !G(𝑅,𝑊)" [𝑑𝑅 ∼ 𝑆𝑅]0≤𝑅≤𝑄

𝑑0 =
𝐿𝑅𝑈𝐿 𝑅 ≠ 𝑆𝑄
𝑋𝑂 ≻𝑁 𝑊

min(𝐿,𝑇)𝑅⋊ ⇐ [𝑑𝑅]0≤𝑅≤𝑄
Fig. 17. Bidirectional elaboration of production 𝑐 ↢ 𝑑 and reduction 𝑐 ⇐ 𝑑 rules for CFGH from PBG G

di!erent possible reduction orders: given a reduced child, which of the operators on either side of
it should be reduced next as part of its parent? Derivations (a) and (b) represent disfavored choices
of reducing the left parent ⟩ + and in ⧸︃ before the right ⟩ * ⧸︃ over the reduced children !2 and
!0, respectively. On the other hand, (c) has no viable alternative reduction order, since let cannot
parent a child to its left. In such cases, the precedence annotations need not be consulted.

To account properly for these left- and right-sided concerns, our elaborated grammarH features
nonterminals 𝑐 = 𝐿𝑅𝑀 with separate precedence bounds 𝑌 and 𝑍 on either side. Uniquely to this
work, we interpret these bounds in a bidirectional fashion: either 𝑌 and 𝑍 are bounds imposed by
the surrounding derivation tree producing 𝑐 , limiting the terms 𝑐 produces; or they are bound-
requirements synthesized from the term that reduces to 𝑐 . Our de"nition of elaboration in Fig. 17 is
organized accordingly. A production rule 𝑐 ⇒ 𝑑 is introduced either by tightening the bounds on 𝑐
(Produce-Tighten) or by subsuming the corresponding reduction 𝑐 ⇐ 𝑑 (Produce-Subsume), as
illustrated forHHZ in Fig. 14.

let " = ! in ! ∈ !G(!, 0)"
let ≠ ! 0 ≺! 1 1!" ∼ !

⋊!min(0,")
⇐ let """ = "!" in 1!"

Meanwhile, a reduction rule 𝑐 ⇐ 𝑑 synthesizes the
tightest possible bounds on 𝑐 that can accommodate 𝑑 .
These correspond to Aasa’s notion of precedence weights
[1] that aggregate the precedence levels of operators ex-
posed along the left and right spines of a syntax tree.
Whether an operator contributes its annotated prece-

dence level to its left and right weights depends on its shape—either operand, pre"x, post"x, or
in"x. For example, in the derivation on the left using rule PElab-Prefix for HHZ, the pre"x-
shaped let -form synthesizes left weight ⧖ and right weight min(0,&), where the latter folds
in the annotated level 0 into the subweight & (underlined to distinguish it from other & values
in the derivation) already computed for the rightmost child 1!". Our bidirectional presentation

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

404:12 David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar

node X ∶∶= 𝑎)︃ S
term R,S ∶∶= ⎞X⎡

Fig. 18. Syntax of terms

leq . ∶∶= ⋖)︃ ≐ <∶ ∧
stack K ∶∶= ()︃ K .S? 𝑎

hd(() = (

hd(K .S? 𝑎) = 𝑎

Fig. 19. Syntax of stacks

𝑑 ⇚ X Node X reduces
to symbol 𝑑

Reduce-Token
𝑎 ⇚ 𝑎

Reduce-Term (𝑕 ≥ 0)
𝑐 ⇐ [𝑑𝑅]0≤𝑅≤𝑄
[𝑑𝑅 ⇚ X𝑅]0≤𝑅≤𝑄
𝑐 ⇚ ⎞[X𝑅]0≤𝑅≤𝑄⎡

𝑑 ⋊ X Symbol 𝑑 produces
node X

Produce-Token
𝑎 ⩕ 𝑎

Produce-Term (𝑕 ≥ 0)
𝑐 ⇒ [𝑑𝑅]0≤𝑅≤𝑄
[𝑑𝑅 ⩕ X𝑅]0≤𝑅≤𝑄
𝑐 ⩕ ⎞[X𝑅]0≤𝑅≤𝑄⎡

Fig. 20. A node is well-formed if it is reducible to or producible from a symbol.

K wf Stack K is
well-formed

WFStack-Nil
(wf

WFStack-Cons
K wf 𝑐?⩕ S?

hd(K) .𝑉? 𝑎

K .S? 𝑎 wf

Fig. 21. Well-formed stacks

reorganizes and generalizes Aasa’s to multi-sorted grammars of arbitrary mix"x forms, which we
discuss further in §6.

3.2 OP Parsing Errors
In this section, we review Floyd’s original method for operator-precedence (OP) parsing [13]. To
motivate our error-handling generalization in §3.3, we consider in particular the di!erent ways an
OP parser can fail.

Parsing is the task of organizing token sequences into grammatically well-formed terms. Fig. 18
gives the syntax of terms: a term S = ⎞X⎡ demarcates a sequence X of child nodes, each either a
token 𝑎 or a subterm. We consider S to be well-formed if it is reducible to or producible from a
nonterminal 𝑐 , i.e. 𝑐 ⇚ S or 𝑐 ⩕ S as de"ned in Fig. 20.
OP parsing is a simple form of shift-reduce parsing: input tokens are ingested one at a time,

left-to-right, and kept organized in a maximally reduced stack K whose contents form pre"xes of
terms under construction. Fig. 19 gives the syntax of OP parsing stacks: a stack K is either empty,
the start delimiter (a#xed at its base; or it is nonempty K .S? 𝑎 , linking a token 𝑎 to the rest
of the stack K with two pieces of information: a comparison operator . recording how the head
of K precedence-relates to 𝑎 , and an optional term S? recording what was "rst reduced between
them. A stack K is considered well-formed, as speci"ed in Fig. 21, when each of its links 𝑎𝑂 .S? 𝑎𝑃
re$ects a valid precedence relation 𝑎𝑂 .𝑉? 𝑎𝑃 such that 𝑐?⩕ S?. For brevity, we will call optional
nonterminals slots and optional terms cells.
The height of a stack is the number of ⋖-operators it contains. We can decompose any stack of

height 𝑖 into a sequence of 𝑖 height-1 stacks, each of the form 𝑎 ⋖S?0 𝑎0[≐S?𝑁 𝑎𝑅]0<𝑅≤𝑄 (𝑕 ≥ 0)
We may interpret each such stack as a term under construction ⋖S?0 𝑎0[≐S?𝑁 𝑎𝑅]0<𝑅≤𝑄
delimited on its left by 𝑎 , which is either the start of input (or the head of the preceding stack in
the decomposition.
Fig. 22 shows Floyd’s original algorithm, presented here as a push operation K←!

R?
𝑎 = K⋉ that

pushes the next input token 𝑎 onto stack K over the current reduction-in-progress R? to yield a
new stack K⋉. Fig. 23 and Fig. 24 illustrate concrete OP parsing traces forHHZ using the precedence
table in Fig. 16—each colored box applies one of the rules in Fig. 22, enumerating within it the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

Syntactic Completions with Material Obligations 404:13

satis"ed premises, and sends the push-inputs above it to the output stack below it. Every push
begins by consulting how the stack head hd(K) precedence-compares with the pushed token 𝑎
to decide whether to Shift or Reduce. If hd(K) . 𝑎 , then the parser shifts 𝑎 onto K and “"nalizes”
the reduction R? between them. Else, if hd(K) ⋗ 𝑎 , and K has height 𝑖 ≥ 1, then the parser has
identi"ed its next handle (i.e. reduction target) of the form hd(K) ⋖R?0 𝑎0⎤≐R?𝑅 𝑎𝑅 ⎣0<𝑅≤𝑄 ⋗R?𝑄+1 𝑎
where hd(K) and 𝑎 delimit the handle ⎞R?0[𝑎𝑅R?𝑅+1]0≤𝑅≤𝑄⎡ to be reduced and propagated up the
stack.

K←%%
R?

𝑎 = K⌐ Pushing token 𝑎 onto stack K over reduction R?
returns stack K⋉

OP-Shift
hd(K) . 𝑎

K←!!
R?

𝑎 = K .R? 𝑎

OP-Reduce (𝑕 ≥ 0)
𝑎𝑄 ⋗ 𝑎 K0 ←!!!!!!!!!!!!!

⎞R?0[𝑎𝑅R?𝑅+1]0≤𝑅≤𝑄⎡
𝑎 = K⋉

K0 ⋖R?0 𝑎0 ⎤≐R?𝑅 𝑎𝑅 ⎣0<𝑅≤𝑄 ←!!!!R?𝑄+1
𝑎 = K⋉

Fig. 22. OP parsing

Shift

Stuck

(←!○ 2

(⋖ 2

(⋖⌐ 2 ←!○ let

2 ? let

Fig. 23. An OP parsing trace
for HHZ (Fig. 16) that gets
stuck trying to compare
neighbors 2 and let

Shift

Reduce

Reduce

Shift

Shift

(←!○ 2

(⋖ 2

(⋖⌐ 2 ←!○ *

2 ⋗ *

(←!!!

⎞ 2 ⎡
*

(⋖ *

(⋖)︃ 2 [︃ * ←!○)
* ⋗)
(←!!!!!!

⎞⎞ 2 ⎡ * ⎡
)

(≐)

(≐)︃)︃ 2 [︃ * [︃)
Fig. 24. A valid OP parsing
trace for HHZ that returns
the invalid term)︃)︃ 2 [︃ * [︃

Let us consider the ways this algorithm can fail.

3.2.1 Stuck. Like with most (non-error-handling) methods, a typical
OP parser will easily get stuck. This occurs when the stack head
and pushed token share no precedence relation, like 2 and let in
Fig. 23.

3.2.2 Invalid Reduction. OP parsing is unsound, meaning it can pro-
duce grammatically invalid reductions. Recall from §3.1.3 that each
precedence comparison 𝑎𝑂∧𝑆?𝑎𝑃 means there exists a derivable string
of the form ...𝑎𝑂𝑏?𝑎𝑃 Floyd’s original de"nition of precedence com-
parisons omits the index 𝑏?. This “nonterminal blindness” means
that an OP parser, given a reduction R? between delimiters 𝑎𝑂 and
𝑎𝑃 , can determine which parent delimiter(s) to reduce next, but not
whether R? is a valid child of the chosen parent. In the "nal Reduce
step in Fig. 24, the parser identi"es the handle pattern (⋖ * ⋗)

and proceeds blindly to reduce [︃[︃ 2]︃ *]︃ without checking that

the initial reduction ⌐ is a valid right-argument to * .

3.2.3 Invalid Prefix. A core tenet of shift-reduce parsers is the valid
pre!x property, which maintains that the parse stack forms the pre"x
of some grammar-derivable symbol string. This property ensures
that the parser is sound, i.e. every parsed term is well-formed.

#̂ ↢ $ / $)︃ t
/ ↢ { # })︃ x

Ideally pre"x-validity would be implied by stack well-formedness (Fig. 21),
but this is not always the case for an OP parser depending on the grammar.
Consider the small grammar on the left, which produces strings like t, x,

${t}$, ${$x$}$, etc. Generated from this grammar are the precedence comparisons (⋖ $ and
$ ≐ $, so Floyd’s parser would happily ingest the tokens xx$ and organize them into the stack

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

404:14 David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar

(⋖○ $ ≐●{x} $ ≐●{x} $, which is well-formed but pre"x-invalid. The issue here is the reuse of $ as
both opener and closer in the rule #̂↢ $/$. Distinguishing between these two uses would require
stack-level analyses out of scope of the local pairwise precedence comparisons.

3.3 OP Parsing with Error Handling
We now de"ne our error-handling extension of OP parsing that avoids or recovers from the various
failure modes seen in the last section. Some of our changes involve requirements (§3.3.1) and
transformations (§3.3.2) of the language grammar; others involve generalizing Floyd’s algorithm
(§3.3.3) to incorporate completion-based repairs and to restore soundness by making use of our
nonterminal-enriched precedence comparisons.

3.3.1 Molding Tiles. To secure the valid pre"x property (§3.2.3), we take the blunt approach of
requiring every tile 𝑃 ∈ T to appear uniquely in the PBG G:

A$$%&"#’() 2 (U)’0! T’1!$). A tile 𝑃 ∈ T is called unique if (...𝑃 ... ∈ !G(𝑅,𝑌)" and ...𝑃 ... ∈
!G(𝑄 ,𝑍)") imply (𝑅 = 𝑄 and 𝑌 = 𝑍 and 𝑃 appears uniquely in G(𝑅,𝑌)). All tiles 𝑃 ∈ T are unique.

With Assumption 2, we can guarantee for any height-1 precedence chain of the form 𝑎 ⋖𝑏?0
𝑃0⎤≐𝑏?𝑅 𝑃𝑅 ⎣0<𝑅≤𝑄 that the string [𝑏?𝑅𝑃𝑅]0≤𝑅≤𝑄 forms a pre"x of the yield of some nonterminal 𝑐
adjacent to 𝑎 :

L!&&+ 3.2 (V+1’2 P*!3’/!$). For all terminals 𝑎 , tiles [𝑃𝑅]0≤𝑅≤𝑄 , and slots [𝑏?𝑅]0≤𝑅≤𝑄+1 (𝑕 ≥ 0)
such that 𝑎 ⋖𝑏?0 𝑃0⎤≐𝑏?𝑅 𝑃𝑅 ⎣0<𝑅≤𝑄 ∨ 𝑏?𝑄+1 there exist nonterminals 𝑐𝑊 ,𝑐 , tiles [𝑃𝑅]𝑄<𝑅≤𝑋 , and slots
[𝑏?𝑅]𝑄+1<𝑅≤𝑋+1 (𝑗 ≥ 𝑕) such that 𝑎 ∨ 𝑐𝑊 ⩔⌐ 𝑐 ⇒ 𝑏?0[𝑃𝑅 𝑏?𝑅+1]0≤𝑅≤𝑋 .

Assumption 2 would be severely constraining if G were a grammar of purely textual tokens—for
example, we would not be able to reuse parentheses () across di!erent sorts. In this work, we
take G to be a grammar of tiles, which we conceptualized in our Hazel grammar GHZ (Fig. 13) as
being textual tokens paired with “molds”, visually distinguished using color and shape. Rather
than requiring that the grammar author manually design and distinguish their terminal symbols,
however, we can generically convert any ordinary textual grammar F into a grammar G of unique
tiles, simply by augmenting each terminal symbol in F with its one-hole context, i.e. its mold.
We continue this discussion in §4, where we describe how tall tylr chooses between multiple
possible molds for a textual token.

3.3.2 Injecting Grout. When a shift-reduce parser “goes wrong”, it is because of an unresolved
mismatch between the bottom-up reductions accumulated so far and the remaining top-down
expectations of the grammar. Many of these mismatches are inconsistencies of multiplicity: in
Fig. 24, the reduction [︃[︃ 2]︃ *]︃ in the last Reduce step is ill-formed because there is no term where

one is expected as the right multiplicand; in Fig. 23, the parser gets stuck on neighbors 2 and let
because it does not know how to combine these parts of two unrelated terms into one as required.
When multiplicities align, there remains further the possibility of sort inconsistencies, such as the
one in Fig. 9 between the let -delimiter expecting a pattern and the -> -term providing a type.

Fig.25 shows howwe materialize these inconsistencies as grout forms injected into the elaborated
grammar, extending our de"nition in Fig. 17, while Fig. 26 shows an excerpt of the grout forms
injected intoHHZ. Every sort acquires the form ⋊𝑅⋊ ⇒ 𝑁 , injected via rule GInj-Hole, consisting
of a single convex grout terminal 𝑁 that stands in for missing terms of sort 𝑅 .
Grout terminals also come in pre"x , post"x , and in"x shapes that are used to wrap sort-

inconsistent and extraneous terms, injected via the rules GInj-Operand, GInj-Infix, GInj-Prefix,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

Syntactic Completions with Material Obligations 404:15

and GInj-Postfix. There are four of these rules to enumerate over whether the left and right ends
of the form are bookended with a pre"x 𝑁 or post"x 𝑁 grout, respectively. The left (right) bookend
is optional when the exposed nonterminal is a leftmost (rightmost) descendant of the unbounded
sort "𝑅". For example, Fig. 26 includes the grout production ⋊"" ⇒ "#" because of the "-sorted
form ""1 : "#" inHHZ (Fig. 14), where "#" is the rightmost descendant. On the other hand, there
is no !-sorted form with """ as its leftmost or rightmost descendant, so """ can only appear in the
!-sorted grout forms that bu!er it on both sides (e.g. """).

Grout terminals behave like associative operators of loosest precedence within each sort, where
their left and right tip decorations follow the pattern of tiles. More precisely, 𝑘𝑁𝑂 ≐ 𝑘𝑁𝑃 if 𝑘𝑂 is
right-concave and 𝑘𝑃 is left-concave, and 𝑘𝑁 ⋖ 𝑃 for any tile 𝑃 of sort 𝑅 if 𝑘 is right-concave. The
nonterminal descendants 𝑏𝑅 are precedence-bounded in their injected forms ⎦𝑏𝑅⎢0𝑁 , depending on
their sort, to prevent con$icting precedence comparisons between grout terminals of the same sort.

3.3.3 Parsing with meldr. Fig. 29 gives the rules for parsing with meldr, whose notable features we
will illustrate through several examples.

Fig. 30 illustrates how meldr directly generalizes the standard non-error-handling algorithm
(Fig. 22). The main di!erence is the new !ll operation, de"ned in Fig. 27, invoked in Fig. 30 as
⋊ ' ⌐slot = ⌐cell in Reduce and [︃ x]︃' ""1 = [︃ x]︃ in Shift. Filling is responsible for assigning
accumulated reductions to grammatically appropriate slots, now exposed as operator indices in

𝑐 ⇐ 𝑑 𝑑 reduces to 𝑐 in grout-injected G grout 𝑘 ∶∶=)︃)︃)︃

terminal 𝑎 ∶∶= ...)︃ 𝑘𝑁

...
GInj-Hole

⋊𝑅⋊ ⇐ 𝑁
𝑐 ! 𝑅 = ⎥ ⧖ if 𝑐 ⎧∼ 𝑅

& if 𝑐 ∼ 𝑅 ⎫ ⎦
𝐿𝑄𝑀⎢𝑇𝑁 =

⌊︃
⌋︃⌋︃
⌈︃
⌋︃⌋︃
⌉︃

max(𝑇,𝐿)𝑄max(𝑀,𝑇) if 𝑄 = 𝑅
𝐿𝑄𝑀 if 𝑄 ≠ 𝑅

{︃
⌋︃⌋︃
}︃
⌋︃⌋︃
⟨

GInj-Operand (𝑕 ≥ 0)

⎤
"𝑅" ⇒⌐ ...𝑏𝑅 ... ⎣0≤𝑅≤𝑄⋊𝑅⋊ ⇐ 𝑁
⎦𝑏0⎢

0
𝑁 ⎩

𝑁
⎦𝑏𝑅⎢

0
𝑁 ⎭0<𝑅≤𝑄 𝑁

GInj-Infix (𝑕 ≥ 0)
"𝑅" ⇒⌐ 𝑏0 ... ⎤

"𝑅" ⇒⌐ ...𝑏𝑅 ... ⎣0<𝑅<𝑄
"𝑅" ⇒⌐ ...𝑏𝑄

𝑆0 ! 𝑁𝑅𝑆𝑂 ! 𝑁
⇐ ⎦𝑏0⎢

0
𝑁 ⎩

𝑁
⎦𝑏𝑅⎢

0
𝑁 ⎭0<𝑅≤𝑄

GInj-Prefix (𝑕 ≥ 0)

⎤
"𝑅" ⇒⌐ ...𝑏𝑅 ... ⎣0≤𝑅<𝑄

"𝑅" ⇒⌐ ...𝑏𝑄
⋊𝑅𝑆𝑂 ! 𝑁

⇐
𝑁
⎦𝑏0⎢

0
𝑁 ⎩

𝑁
⎦𝑏𝑅⎢

0
𝑁 ⎭0<𝑅≤𝑄

GInj-Postfix (𝑕 ≥ 0)
"𝑅" ⇒⌐ 𝑏𝑄 ... ⎤

"𝑅" ⇒⌐ ...𝑏𝑅 ... ⎣
𝑄>𝑅≥0

𝑆𝑂 ! 𝑁𝑅⋊ ⇐ ⎩ ⎦𝑏𝑅⎢0𝑁 𝑁
⎭
𝑄≥𝑅>0 ⎦𝑏0⎢0𝑁 𝑁

Fig. 25. Grout injection extending the definition of terminals 𝑎 (Fig. 12) and reduction 𝑐 ⇐ 𝑑 (Fig. 17)

"!" 0!0 0!0)︃ 0!0 0!0 0!0)︃ ...

"!⋊ 0!0)︃ 0!0 "#")︃ ...
⋊!" 0!0)︃ """ 0!0)︃ ...

⋊!⋊)︃
0!0)︃ """)︃ ...

""" 0"0 0"0)︃ 0"0 "#")︃ ...

""⋊ 0"0)︃ 0"0 "#")︃ ...
⋊"" 0"0)︃ "#")︃ ...

⋊"⋊)︃
0#0)︃ ...

"#" 0#0 0#0)︃ ...

"#⋊ 0#0)︃ ...

⋊#" 0#0)︃ ...

⋊#⋊)︃ ...

Fig. 26. Excerpt of the grout rules injected (Fig. 25) intoHHZ (Fig. 14). The production rules are arranged and
color-coded by whether they emerge from subsuming reduction or by tightening (Fig. 17).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

404:16 David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar

R& 𝑐? = S? Filling slots 𝑐? with reductions R
returns cells S?

Fill-None

⋊' ⌐ = ⌐

Fill-Default
𝑐 ∼ 𝑅

⋊' ●𝑐 = ●{ 𝑁
}

Fill-Operand (𝑕 ≥ 0)
⎞

𝑁 R0 [
𝑁 R𝑅]0<𝑅≤𝑄 𝑁

⎡

⎨⎬⎬⎬⎪⎬⎬⎮

𝑐 ⩕ S
[R𝑅]0≤𝑅≤𝑄 ' ●𝑐 = ●S

Fill-Infix (𝑕 ≥ 0)
⎞R0 [

𝑁 R𝑅]0<𝑅≤𝑄⎡
⎨⎬⎬⎪⎬⎬⎮

𝑐 ⩕ S
[R𝑅]0≤𝑅≤𝑄 ' ●𝑐 = ●S

Fill-Prefix (𝑕 ≥ 0)
⎞

𝑁 R0 [
𝑁 R𝑅]0<𝑅≤𝑄⎡

⎨⎬⎬⎪⎬⎬⎬⎮

𝑐 ⩕ S
[R𝑅]0≤𝑅≤𝑄 ' ●𝑐 = ●S

Fill-Postfix (𝑕 ≥ 0)
⎞[R𝑅

𝑁
]0≤𝑅<𝑄 R𝑄

𝑁
⎡

⎨⎬⎬⎪⎬⎬⎮

𝑐 ⩕ S
[R𝑅]0≤𝑅≤𝑄 ' ●𝑐 = ●S

Fill-Partition (1 ≤ 𝑙 ≤ 𝑕)

R = ⎩R𝑅 ⎭1≤𝑅≤𝑄 ⎩R𝑅 ' 𝑐?𝑅 = S?𝑅 ⎭1≤𝑅≤𝑄
R' [𝑐?𝑅]1≤𝑅≤𝑄 = [S?𝑅]1≤𝑅≤𝑄

Fig. 27. Filling slots

parse (K, ⋊) = K

parse (K,𝑎 𝑎) = parse⎝K←!⧖ 𝑎,𝑎⎠

Fig. 28. Parsing with meldr

K←%
R

𝑎 = K⌐ Pushing token 𝑎
onto stack K

over reductions R
returns stack K⋉

Shift (𝑕 ≥ 0)

hd(K)⎤.𝑏?𝑅 𝑎𝑅 ⎣0≤𝑅≤𝑄 = 𝑎
R' [𝑏?𝑅]0≤𝑅≤𝑄 = [S?𝑅]0≤𝑅≤𝑄
K←!

R
𝑎 = K⎤.S?𝑅 𝑎𝑅 ⎣0≤𝑅≤𝑄

Reduce (0 ≤ 𝑕 ≤ 𝑗)

𝑃𝑄⎤≐𝑏?𝑅 𝑃𝑅 ⎣𝑄≤𝑅≤𝑋 ⋗𝑏?𝑋+1 ◻
R' [𝑏?𝑅]𝑄<𝑅≤𝑋+1 = [R?𝑅]𝑄<𝑅≤𝑋+1
K0 ←!!!!!!!!!!!!!
⎞R?0[𝑃𝑅 R?𝑅+1]0≤𝑅≤𝑋⎡

𝑎 = K

K0 ⋖R?0 𝑃0 ⎤≐R?𝑅 𝑃𝑅 ⎣0≤𝑅≤𝑄 ←!R
𝑎 = K

Degrout (𝑕 ≥ 0)
K0 ←!!!!!!!!
[R?𝑅]0≤𝑅≤𝑄 R

𝑎 = K

K0 ⋖R?0 𝑘
𝑁
0 ⎤≐R?𝑅 𝑘

𝑁
𝑅 ⎣0<𝑅≤𝑄 ←!R

𝑎 = K

Fig. 29. Pushing with meldr

Reduce

Shift

(⋖○ let ⋖○ x ←!○ :

x ⋗ :

(⋖○ let ←!!!
)︃ x [︃

:

let ⋖ :

(⋖○ let ⋖
⎞ x ⎡

:

Reduce

Shift

(⋖○ let ⋖○ x ←!⧖ :

x ⋗○slot :

⋊' ⌐slot = ⌐cell

(⋖○ let ←!!!!!!
⎞⌐ x ⌐cell⎡

:

let ⋖""1 :

⎞ x ⎡'""1 = ⎞⌐ x ⌐cell⎡
(⋖○ let ⋖

⎞⌐ x ⌐cell⎡
:

Fig. 30. Corresponding traces of OP parsing (le!) and meldr (right) on the
same inputs to highlight their di#erences

Shift

(⋖○ let ←!⧖ :

let ⋖""1 :

⋊'
""1 = { "

}

(⋖○ let ⋖
{

"
}

:

Fig. 31. meldr filling the slot""1 with the grout form { "
}

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

Syntactic Completions with Material Obligations 404:17

the precedence comparisons. In Reduce, nothing ⋊ is assigned to the un"llable slot ⌐slot; in Shift, the
reduction [︃ x]︃ is assigned to the "llable slot ●""1. In these cases, the input reduction is returned
as is because it is consistent with its assigned slot. In other cases, "lling may additionally repair
the given reduction with additional grout to bridge any multiplicity or sort inconsistencies. Fig. 31
shows how pushing : against the stack (⋖○ let leads to the slot ●""1 getting "lled instead
with convex grout { "

}.

Shift

(⋖○ let ←!⧖ Num

let ⋖○ "
⋖○ Num

⋊' ⌐ ⌐ = ⌐ ⌐

(⋖○ let ⋖○ "
⋖○ Num

(a)

Reduce

Shift

(⋖○ let ←!⧖)
let ≐⌐"⌐ = ≐⌐!⌐ in ⋗1!⌐)

⋊'
""" "!" 1!" = { "

} {
!
} {

!
}

(←!!!
Slet

)

(≐⌐!⌐)

Slet'
"!" = Slet

(≐Slet)

(b) Slet =)︃ let { "
} = { !

} in { !
}[︃

Fig. 32. meldr traces with multi-step prece-
dence walks

Fig. 32 shows how meldr generalizes the single-
step precedence comparisons of the original algo-
rithm to multi-step precedencewalks. Where the orig-
inal method would get stuck trying to push Num

or) against the stack (⋖○ let because let is
precedence-comparable with either, meldr can pro-
ceed because it "nds extended walks like let ⋖○
"
⋖○ Num and let ≐⌐"⌐ = ≐⌐!⌐ in ⋗1!⌐).

In both of these cases, the "ll operation has mul-
tiple ways of assigning the initial reduction [︃ x]︃
to the traversed slots, as determined by the rule
Fill-Partition. Whichever walk is chosen and
however its slots are "lled (§4.1), the intermediate
terminals and "lled slots traversed between the com-
parands form the completionmeldr uses to repair the
input.
A subtle but consequential di!erence between

meldr and OP parsing lies in our de"nition of Reduce:
meldr does not require that the comparison walk con-
clude with the pushed terminal 𝑎—any concluding
terminal (notated ◻) is su#cient. This relaxation al-
lows meldr to fall back to Reduce when the stack
head and pushed terminal are not monotonically precedence-walkable, completing and reducing
the head stack level and deferring the comparison to something further up the stack. An example of
this is shown in the "rst Reduce step in Fig. 33b that handles pushing let against the stack (⋖○ 2 .
As shown in the example and in our metatheory, this recursive deferral is guaranteed to conclude
eventually with the base rule Shift, thanks to the various grout forms that can accommodate both
the accumulated reduction and the pushed terminal. This fallback to completion and reduction is
a sort of opposite of “panic mode”, which is forced instead to drop parts of the stack without the
multiplicity-handling guarantees of grout.

3.3.4 Sound and Total. Altogether, molded tiles, injected grout, and our "lling and walking exten-
sions of OP parsing guarantee that meldr can complete and reduce any sequence of input tiles into
a well-formed term.

L!&&+ 3.3 (P%$,’)4 ’$ S(%)2 +)2 T(#+1). For all well-formed stacks K wf and tiles 𝑃 , there
exists well-formed stack K⋉ wf such that K←!⧖ 𝑃 = K⋉.

T,!(*!& 3.4 (P+*$’)4 ’$ S(%)2 +)2 T(#+1). For all well-formed stacks K wf and tile sequences
𝑃 , there exists well-formed stack (≐S) wf such that parse (K, 𝑃)) = (≐S).

The traces in Fig. 33 illustrate this guarantee for the failed examples in Fig. 23 and Fig. 24.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

404:18 David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar

Shift

Reduce

Reduce

Shift

Shift

(←!⧖ 2

(⋖⌐ 2 ⋊' ⌐ = ⌐

(⋖⌐ 2 ←!⧖ *

2 ⋗○ * ⋊' ⌐ = ⌐

(←!!!

)︃ 2 [︃
*

(⋖"!3 *

⎞ 2 ⎡' "!3 = ⎞ 2 ⎡
(⋖)︃ 2 [︃ * ←!⧖)

* ⋗3!⌐)

⋊'
3!" = { !

}

(←!!
S⌐)

(≐"!")

S⌐ ' "!" = S⌐
(≐S⋊)

(a) S⋊ =)︃)︃ 2 [︃ * { !
}[︃

Reduce

Shift

Reduce

Degrout

Shift

(⋖⌐ 2 ←!⧖ let

2 ⋗○ ◻ ⋊' ⌐ = ⌐

(←!!!

)︃ 2 [︃
let

(⋖0!0
!
⋖⌐ let

⎞ 2 ⎡' 0!0 ⌐ = ⎞ 2 ⎡ ⌐

(⋖)︃ 2 [︃ !
⋖⌐ let ←!⧖)

let ≐⌐"⌐ = ≐⌐!⌐ in ⋗1!⌐)

{
"
}'

""" "!" 1!" = { "
} {

!
} {

!
}

(⋖)︃ 2 [︃ !
←!!!
Slet

)

(←!!!!!!

⎞ 2 ⎡ Slet
)

(≐"!")

⎞ 2 ⎡ Slet '
"!" = Ŝ

(≐Ŝ)

(b) Slet =)︃ let { "
} = { !

} in { !
}[︃, Ŝ =)︃)︃ 2 [︃ !Slet[︃

Fig. 33. Complete parsing traces using the rules in Fig. 29 to illustrate how meldr (a) avoids producing
ill-formed terms like in Fig. 24 and (b) avoids ge"ing stuck like in Fig. 23

4 From meldr to tall tylr

meldr formalizes a nondeterministic parser of tile sequences, possibly completing them with some
choice of grout and additional tiles, and we showed that the resulting term is grammatical and
guaranteed to exist. To turn this into a deterministic parser of textual input, we must answer
the following questions. (A) How does the parser “mold” raw text into the tiles to be parsed, in
particular when numerous grammatically unique tiles share a common textual form? (B) How does
the parser rank and choose among di!erent possible completions?

Moreover,meldr assumes a batch processing context, where the entire input is parsed left-to-right
from scratch. Further questions arise when incorporating meldr into an interactive editor like tall
tylr. (C) How might existing structures and completions guide or constrain subsequent molding
and completion choices? (D) How does the user interact with the system-chosen completions, in
particular when it di!ers from their intent?
This section describes how we addressed these questions in our implementation of tall tylr.

Subsequently, Section 5 presents the user study we conducted to evaluate these decisions.

4.1 Minimizing Obligations
Guiding tall tylr’s various decisions is a simple principle: minimize obligations. Obligations
serve not only to sca!old and complete partial structures, but also as a useful metric for resolving
ambiguities. Because meldr is total, we may adopt the simple strategy of trying every choice at

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

Syntactic Completions with Material Obligations 404:19

each juncture—setting aside e#ciency concerns for the moment—and taking the one that inserts
the fewest (and removes the most) obligations.
Each type of obligation is weighted di!erently. Recall from §2 that the various forms of obliga-

tions can be viewed as indicators of multiplicity and sort inconsistencies between the top-down
expectations of the grammar and the bottom-up reductions of the input:
● Operand grout indicate there is no term where one is expected (0 = ● < 1).
● Ghosts indicate there is a partial term where one is expected (0 < ● < 1).
● Pre"x and post"x grout indicate there is a term as expected (● = 1), but of the wrong sort.
● In"x grout indicate there are multiple terms where one is expected (1 < ●).

The obligations are listed above in order of increasing weight class. Given two sets of changes in
obligations, we compare them lexicographically from highest to lowest weight class. The principle
underlying this ordering is context preservation: lower-weighted obligations like operand grout and
ghosts are introduced to complete a form independent of its context, whereas higher-weighted
obligations like pre-, post-, and in"x grout appear when the current context cannot accommodate
a form and must change.

(⋖⌐ let ←!○ (= (⋖⌐ let ≐{ "} = ⋖⌐ (

(⋖⌐ let ←!○ (= (⋖⌐ let ⋖⌐ (

(⋖⌐ let ←!○ (= (⋖⌐ let ⋖⌐ "
⋖⌐ (

Molding Tiles. When a token is inserted,
tall tylr looks up which tiles in the gram-
mar share the same textual form (typically
only a few) and considers the consequences
of parsing each one. For example, when edit-
ing Hazel (Fig. 13), suppose the token (is inserted against the stack (⋖⌐ let . There are three
distinct tiles with the same textual label, each of a di!erent sort. Pushing each tile against the stack
leads to the following minimal outcomes, where ghosts are indicated with a white background:
The "rst option introduces an operand hole and a ghost, while the third introduces a pre"x grout.
The clear winner is the second option, an opening parenthesis of pattern sort, which introduces no
new obligations.

Choosing Completions. The parsing rules allow for arbitrary walks through the precedence
relation graph, with each step from the head of the stack inserting one or more new obligations.
For example, the following are all valid precedence walks when applying the Shift rule to derive
(⋖⌐ (←!○ , :

(𝑚) (≐{ !} , (𝑛) (⋖⌐ (≐{ !} ,

(𝑜) (≐{ !} , ≐{ !} , (𝑝) (⋖⌐ let ≐{ "} = ⋖⌐ (≐{ !} ,

(𝑞) (≐{ !} , ≐{ !} , ≐{ !} , (𝑟) (⋖⌐ !
⋖⌐ (≐{ !} ,

tall tylr limits the walks considered to those of shortest length found via breadth-"rst search,
ruling out options like (B) and (C). tall tylr also "lters out walks with strictly ⋖-intermediate tile
levels, such as let ≐{ "} = in (E), preferring instead to abstract such possibilities with grout like
in (F). The remaining walks are subsequently sorted by height and length to break ties in obligation
deltas when "lling in any accumulated terms.

4.2 Maintaining Obligations
Total error-correcting parsing lends itself to a continuously structured editing experience. Indeed,
our obligation design is inspired directly by numerous structure editor designs [24, 25]. In this
setting, questions arise as to how to maintain and remove existing obligations to produce a smooth
editing experience, and how to insert new obligations around existing structures.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

404:20 David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar

The main concern regards inserting, maintining, and removing ghosts, as the minimal requisite
grout needed to complete an edit state is fully determined if all requisite tiles are in place. Ghost
maintenance concerns roughly divide into three areas. The "rst concerns inserting ghost replace-
ments after deleting requisite tiles—in this case, to maximize continuity, tall tylr replaces deleted
requisite tiles with ghosts in the same position. The second concerns inserting fresh ghosts around
existing structures on insertion. As mentioned in §2, tall tylr uses a simple policy of inserting
any pending ghosts at the "rst newline following the insertion—all other positioning concerns are
deferred to obligation minimization and completion choices.
The third area concerns removing existing ghosts when they are no longer needed. tall tylr

models its edit state as a pair of pre"x and su#x stacks, where the su#x is reparsed after each
change. There are two cases to consider. The "rst is when a ghost in the su#x becomes redundant—
for example, when inserting) between the stacks (⋖⌐ (⋖⌐ 2)︃ + ⋗]︃ 3 ⌊︃) ⋗○)
When a ghost is encountered in the su#x, tall tylr pushes it onto the pre"x stack as if it were a
solid tile and removes it if it cannot "nd an ≐-match. The second case is when a ghost in the pre"x
becomes redundant—for example, when inserting in between the stacks

(⋖⌐ let ≐{ "} = ≐{ !} in ⋖⌐ 4)︃)

When tall tylr pushes in onto the pre"x and encounters the ghost in , tall tylr tries
removing it and commits to the removal if the pushed in "nds an ≐-match. Our current design is
limited in that it provides no way to removing ghosts directly, instead requiring the user to insert a
solid tile replacement elsewhere, the consequences of which we discuss in more detail in §5.

4.3 Performance
The focus of this paper is on the conceptual, theoretical, and interaction design of tall tylr. We
did little to optimize its performance beyond what was needed for responsiveness on relatively
small programs (less than 100 lines) and make no strong claims, though we report basic perfor-
mance numbers in the supplemental appendix for the sake of completeness. There are high-level
reasons to believe that this approach would scale performantly. Standard OP parsing scales linearly
with the input and moreover enjoys the property of local parsability which greatly simpli"es
incrementalization and parallelization [4, 5]. Meanwhile, prior work on enumerating local repairs
[7, 10] suggests this can be done e#ciently. We leave detailed optimizations along these lines to
future work.

5 User Study
Prior work on error-handling parsing does not explicitly consider user interfaces for representing
and interacting with parse errors. In tall tylr, we explore a novel UI that materializes obligation-
based repairs as inline completions. This requires making choices about where to insert obligations
in situations underdetermined in our formal model. Providing a good user experience thus requires
choosing heuristics which adequately anticipate user intent across real-world coding tasks, as well
as providing a!ordances to correct obligation placement in cases where these heuristics fail.

We took a maximally structured approach, inserting or removing obligations on every code edit
so that the edit state remains structured at all times. While this strategy is desirable in that it allows
the possibility of continuous language server feedback, it is relatively aggressive, raising questions
about the impact of frequent insertion and removal of elements within the text $ow.
We considered the following questions:

Q1 Do users generally "nd tall tylr usable and useful across a range of naturalistic code insertion
and modi"cation tasks?

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

Syntactic Completions with Material Obligations 404:21

Table 1. Study tasks including line count change between initial and target states

Task Type Description Lines
1 Transcription Linear entry of data pipeline +5
2 Modi"cation Rearrange the elements of a data pipeline +2 -2
3 Transcription Linear entry of geometry processing function +5
4 Modi"cation Extract helper function +6 -3
5 Transcription Linear entry of graphics function de"nition +7
6 Modi"cation Refactor a function to remove redundancy +7 -7
7 Modi"cation Add a sum type and add branching to linear code +9 -3
8 Modi"cation Uncurry function de"nition and type annotation +2 -2
9 Modi"cation Fuse a series of transformations +4 -4

Q2 During which kinds of editing operations do users "nd speci"c tall tylr mechanisms useful,
confusing, or cumbersome?

5.1 Study Design
We ran a remote user study, recording participants’ screens as they performed nine code transcrip-
tion and modi"cation tasks. Each sixty minute session began with a series of pre-recorded videos
outlining the motivation for tall tylr and its essential editor mechanisms. To reduce jargon, we
referred to syntactic obligations as ‘placeholders’ in the study materials.

After the introduction, users performed a practice task to familiarize themselves with the study
setup. For each task, they were asked to read and internalize their goal, ask any clarifying questions,
and then proceed, pausing after each task to relay any re$ections, possibly replaying their actions.
At the end of the study, participants were sent a link to an exit survey.

We piloted a shorter version of this study with an earlier prototype; we have included quotes
from one previous participant (labeled P0) in §5.2.

5.1.1 Participants. We recruited participants with self-reported experience in expression-based
languages by posting on Bluesky, Mastodon, and X o!ering compensation of $25 USD for a 1-hour
session. Our study had 9 participants (8 male, 1 non-binary); ages 19-38 (𝑠 = 28); 5-25 years of
programming experience (𝑠 = 13), and 1-15 years of functional programming experience (𝑠 = 6).

5.1.2 Tasks. We chose nine code editing tasks (Table 1) intended to re$ect real-world use patterns,
six of which are adapted from a previous study [25]. As well as simple entry and spot-editing
tasks, we included more complex goals most economically accomplished by multiple edits which
temporarily break term structure; an example is shown in Fig. 34. Since the language syntax is new
to study participants, we asked them to carefully read the desired end state, and to ask the study
administrator any questions about the semantics of the requested transformation.
After each task, participants were asked to re$ect on any unexpected or interesting behaviors

they encountered. Since we knew participants would approach tasks via di!erent editing strategies,
for some tasks we provided a follow-up re$ection slide illustrating a speci"c edit and ensuing
placeholder insertion in order to more directly solicit opinions on particular heuristics.

5.2 Results
Participant assessments of overall usability are summarized in Fig.35 , with eight of nine participants
at least somewhat agreeing that tall tylr was easy to use. However four participants found the
editor at least somewhat mentally demanding, with two experiencing stress or annoyance. This

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

404:22 David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar

Fig. 34. Task 6 asked participants to refactor a function from the start state on the le! to the target state on
the right. Highlighting is added here for readability and was not present in the study.

Fig. 35. Participant opinions on tall tylr’s general usability (le!) and reactions to placeholders (right)

may have been impacted by bugs in the prototype. Promisingly, six participants reported desire to
frequently use an editor supporting placeholder completions.

Of those who found tall tylr easy to use, P8 said “the typing experience felt premium, bespoke,
closer to video game than text editor”. With respect to obligations, P0 remarked “I don’t think I
expect an editor to exactly pinpoint what "x I need to make. How would it know what I intended?
But I like that this allows me to instantly see what it is that you’re assuming I meant.”

Seven participants at least somewhat agreed obligations helped while writing code. Participants
found placeholders particularly helpful during left-to-right entry, with P8 saying “I always would
like placeholder completions until I have a complete expression!”. Some attributed this to lowered
mental load - P0 liked that they could “turn my brain o! a bit while typing them out”. P2 appreciated
that they “just have to remember how to write the "rst token in a term” due to ghost insertion.
However, "ve participants felt obligations at least somewhat got in the way while modifying

code, and half of participants found placeholders at least somewhat visually distracting and hard to
understand. P9 said that “When I’ve created an invalid state [during refactoring], the placeholders
often didn’t feel helpful”. P7 agreed, saying “it seemed to just break and also just jumble up the
screen which is when I probably would’ve preferred a normal editor with red text”.

We identi"ed a number of speci"c scenarios where placeholders proved problematic. Three are
included below, and others (along with more participant reactions) are located in the appendix.

Failed attempts to bust ghosts directly. Although our intended work$ow to address ghosts in
unwanted positions is for the user to insert the delimiter where they wanted, leaving tall tylr to
clean up the misplaced ghost, many participants found themselves wanting to interact with ghosts
more directly. At least "ve participants attempted to directly delete ghosts in one or more tasks,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

Syntactic Completions with Material Obligations 404:23

despite a caution against this in the introductory video. P4 felt “the placeholder completions felt like
they were there to help the computer, not me”, saying that “where I was unable to delete the ghosts
and grout, it took a while to "gure out how to get rid of them.” This was particularly felt when the
obligations were inserted in the middle of a complex edit, with P5 saying “the editor sometimes
added a lot of holes while I was in the middle of editing an expression, which I instinctively tried to
delete.” This issue was exacerbated by a bug in the tall tylr prototype that sometimes prevented
ghost cleanup in the presence of nested ghost delimiters.

Fig. 36. During Task 8, participants must modify type annota-
tion (A) to uncurried form. If this is approached in a le!-to-right
fashion, the user will insert a comma (creating an operand obli-
gation), delete the parenthesis (leaving a ghost), and delete the
type arrow (creating a infix obligation) as shown in (B). If the
ghost parenthesis did not retain its location, the grout could be
combined and cleaned up. This cleanup only occurs when the
user re-inserts the closing parenthesis (C).

Ghosts are sometimes too tied to
the place where they were deleted. Al-
though participants generally liked
that ghost delimiters remembered
their original positions, this did
lead to some confusing in-between
(“tween”) states. Fig. 36 shows a sce-
nario encountered by three partic-
ipants during Task 8. Here users
found the tween state distracting,
sometimes attempting unsuccessfully
to delete the obligations directly, al-
though all eventually moved on to
complete the task successfully.

Uncertainty around triggering token remolding. In tall tylr users must press space after entering
a leading delimiter like let before the associated grout and trailing delimiter ghosts are inserted.
This special treatment of space is primarily to permit entry of tokens beginning with let, and
secondarily to mitigate jarring changes by limiting them to occur only when certain ’action keys’
are pressed. In our study this behavior was unproblematic when writing code, but for editing
it caused issues, particularly during typo correction. For example, during Task 1 participant P3
mistyped an operator requiring space and continued on to the end of the line. They later went back
to correct it, but since there was already a space afterwards, they didn’t bother to press space after
the correction, resulting in remaining in"x obligation and the operator left unmolded. Similar issues
confusion for at least 3 participants, including P7 who noted that "space has a learning curve".

5.3 Threats to Validity
Our participants are few and drawn from social media networks already self-selected for a#nity
towards novel programming tools and concepts.

Our study is a synthetic representation of real coding tasks in the sense that participants’ attention
is arti"cially divided. Where programmers might otherwise be focused on writing, they now must
go back and forth between the slides and the editor. This might make tall tylr look both worse
and better, in that participants cannot devote their full attention to editor mechanics, but also may
avoid being distracted by confusing obligations during awkward tween states.

For the purpose of reducing jargon, we referred to syntactic obligations as ‘placeholders’ in the
study materials, a choice which may have back"red as some participants seemed to expect that
these placeholders should be less insistent and easier to dismiss.
There are also a number of factors which complicate clearly ascribing participant di#culties

to tall tylr mechanics, including: (1) unfamiliar syntax leading to task confusion and higher
rates of typos; (2) bugs in the editor interfering with participants’ accurately internalizing editor
mechanics; (3) learning curve and di#culty internalizing novel concepts within 60 minutes.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

404:24 David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar

6 Related Work
OP Parsing. Operator-precedence (OP) parsing [13] is an early form of bottom-up parsing,

which proceeds by iteratively reducing the input sequence of terminal symbols to a single start
nonterminal. The goal at each iteration is to "nd the next handle, a subsequence of symbols matching
the righthand side of a grammar production rule, and replace it with the lefthand side nonterminal.
Unlike other parsing methods, OP parsing elides the reduced nonterminals. Handles are identi"ed
as chains of precedence-related terminals of the form 𝑃𝑂 ⋖ 𝑃0 ≐ ⋏ ≐ 𝑃𝑄 ⋗ 𝑃𝑃 , where 𝑃𝑂 and 𝑃𝑃
delimit the handle’s terminals 𝑃0 ...𝑃𝑄 . Where typically the handle would be replaced by its reduced
nonterminal, OP parsing instead replaces it with a precedence comparison ∧ ∈ {⋖,≐,⋗} describing
the relation between the delimiters 𝑃𝑂 and 𝑃𝑃 .
Levy [21] observed that OP parsing is consequently unsound,1 as we illustrated in Fig. 24. In

a resolution similar to ours, Henderson and Levy [17] split each precedence relation ∧ into two
relations ∧1 and ∧2, the di!erence being whether a reduced nonterminal is expected between the
related terminals. Our approach generalizes this idea by indexing each relation by the optional
nonterminal itself—the slot-"lling operation inmeldr (Fig.27) uses this extra information to validate
that the bottom-up accumulated reduction meets the top-down slot’s requirements.

Precedence Annotations. In OP parsing, the precedence comparisons are derived from the deriva-
tion patterns of an unannotated CFG. In other words, these methods expect operator precedence
conventions to be encoded in the CFG’s nonterminal dependency structure. This is tedious to do by
hand and leads to a pro"leration of nonterminals, one for each precedence level, that obscure the
language’s natural organization into semantically meaningful sorts. The rule Produce-Tighten in
our PBG-to-CFG elaboration (Fig. 17) automatically extracts these dependency structures from a
sort-organized PBG. Not only does this organization bene"t grammar authoring and documentation,
it also helps our system repair errors using a concentration of grout forms that are semantically
meaningful and thereby more easily user-communicable.
Predominant interpretations of precedence annotations are speci"c to the parsing method—in

LR parsers generators, for example, the annotations are used to resolve shift/reduce con$icts
in the generated action table [2]. Less common are parser-independent semantics, such as our
PBG-to-CFG elaboration (Fig. 17). §3.1.4 described how prior semantics by de Souza Amorim and
Visser [9] (for the language workbench Spoofax [18]) and Danielsson and Norell [8] (for mix"x
operators in Agda) are unnecessarily restrictive in how they handle pre"x and post"x operators.
Making similar observations, Aasa [1] de"ned the precedence weights that we recapitulate in our
elaborated reduction rules (Fig. 17). Aasa used these measure to de"ne when a derivation tree of the
underlying unannotated grammar is precedence-correct according to the annotations. Separately,
Aasa also de"ned a translation from annotated to unannotated grammars, but this translation
follows a di!erent, more complicated design, an opinion we share with Danielsson and Norell [8].
Our elaboration re-centers Aasa’s precedence weights via a novel bidirectional organization.

Error Handling. Modern parsers are expected to be able to recover from errors (i.e. unexpected
tokens) and continue parsing around the error site. Most recovery methods attempt to repair the
input text around the error, di!ering in what repairs they consider and how they choose among them.
The simple “panic mode” method [3, 16] limits itself to repair by deletion, dropping tokens around
the error until parsing can resume from some prior state. While simple to implement, this method
is liable to skip large regions of code, as illustrated in Fig. 1B, leaving the programmer without
downstream semantic analysis. meldr takes an opposite approach, where the tokens dropped by a

1Levy took the goal of parsing to be detecting invalid sentences rather than valid ones, and hence called “complete” (detect
all invalid sentences) what we call “sound” (detect only valid sentences) in this work.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

Syntactic Completions with Material Obligations 404:25

panicking parser are instead completed, reduced, and propagated up the stack with the assurance
that, eventually, grout can be used to join together extraneous terms.
To minimize skipped input, more sophisticated methods [7, 11, 14] consider the full range of

possible repairs around an error, including insertions as well as deletions, and pick one of least cost
according to a language-speci"c cost vector of token modi"cations or else textual edit distance.
Most similar to our work is the FMQ method [12], which performs repairs using only insertions.
This work de"nes the insert-correctable class of grammars against which any input text can be
repaired by insertions to grammatical form—in our work, grout injection (Fig. 25) systematically
relaxes any grammar to be insert-correctable.
Across their variations, these prior repair-based recovery methods limit themselves to purely

textual repairs. This can lead to combinatorial explosion in the space of possible insertion repairs,
as illustrated in Fig. 1C. While these repairs can be enumerated e#ciently in practice [7, 10], prior
work does not consider the question of how to e!ectively surface these repairs to the programmer.
Our approach is novel in its use of abstract syntactic obligations to compress, communicate, and
rank the space of possible repairs.

Structure Editing. tall tylr continues a series of design experiments in increasingly $exible
and text-like structure editing. Its precedessors, tiny tylr [24] and teen tylr [25], proposed and
re"ned a model of structure editing in which the primary units of the edit state are nested spans
of matching tokens, there called tiles of matching shards. A design consequence of this particular
physical metaphor was that shards remained matched for life in those editors, which Moon et al.
[25] observed compromised overall usability. Relaxing this restriction, and repurposing the term
tile for molded tokens, led to the present design.
Error-handling parsing and structure editing are kin in their goals of maximizing structure,

but emphasize quite di!erent aspects of the design/technical problem space. Our prior emphasis
on structure editor design led here to a unique approach to error-handling parsing, one that
builds on the underexplored symbol-based perspective of OP parsing (driven by symbol-to-symbol
precedence comparisons), as opposed to the predominant item-based perspective of methods like
LL/LR (where items refer to points in between the symbols of a production rule, used to de"ne the
states of handle-"nding automata). The token-based perspective comes with design advantages,
simply because tokens provide more visual surface area to decorate than zero-width items—it is, in
our opinion, much easier to display and describe molds to the programmer than it is to display and
describe items and automaton states.

7 Conclusion
This paper presented tall tylr, a tile-based parser and editor generator that handles errors by
completing its input with syntactic obligations. We developed these ideas precisely in our parsing
calculus meldr, which extends OP parsing with error handling and guarantees a well-formed
result on all inputs—along the way, it o!ers a new uni"ed account of operator precedence. Key
components of meldr’s assured totality include relaxing grammaticality with grout, used to bu!er
inconsistencies of multiplicity and sort, and generalizing the single-step comparisons of OP parsing
to multi-step walks that serve as completion-repairs. We proposed the principle of minimizing
obligations that governs how tall tylr discharges the various choices required for parsing and
handling errors. Our user study suggested that syntactic obligations generated this way have both
demand and promise, but more design work is needed to give the programmer more control over
their placement and removal, especially when modifying existing code. Altogether, this work opens
up a signi"cant new design space and we look forward to future design experiments driven by the
core ideas introduced in this paper.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

404:26 David Moon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar

Acknowledgements
This work was partially funded by the National Science Foundation under Grant No. 2238744. Any
opinions, "ndings, and conclusions or recommendations expressed in this material are those of the
author and do not necessarily re$ect the views of the National Science Foundation.

Data Availability Statement
This paper includes an artifact [23] consisting of the study materials given to participants in the
user study. These include a slideshow, introductory videos, an exit survey, and a copy of the tall
tylr editor prototype, which can be run in a modern web browser. A detailed table of contents
and instructions are provided in README.md.

References
[1] Annika Aasa. 1995. Precedences in Speci"cations and Implementations of Programming Languages. Theoretical

Computer Science 142, 1 (May 1995), 3–26. doi:10.1016/0304-3975(95)90680-J
[2] A. V. Aho, S. C. Johnson, and J. D. Ullman. 1975. Deterministic Parsing of Ambiguous Grammars. Commun. ACM 18, 8

(Aug. 1975), 441–452. doi:10.1145/360933.360969
[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Je!rey D. Ullman (Eds.). 2007. Compilers: Principles, Techniques, & Tools

(2. ed., pearson internat. ed ed.). Pearson Addison-Wesley, Boston Munich.
[4] Alessandro Barenghi, Stefano Crespi Reghizzi, Dino Mandrioli, Federica Panella, and Matteo Pradella. 2015. Parallel

Parsing Made Practical. Science of Computer Programming 112 (Nov. 2015), 195–226. doi:10.1016/j.scico.2015.09.002
[5] Alessandro Barenghi, Stefano Crespi Reghizzi, Dino Mandrioli, and Matteo Pradella. 2013. Parallel Parsing of Operator

Precedence Grammars. Inform. Process. Lett. 113, 7 (April 2013), 245–249. doi:10.1016/j.ipl.2013.01.008
[6] Sam Cohen and Ravi Chugh. 2025. Code Style Sheets: CSS for Code. arXiv:2502.09386 [cs] doi:10.1145/3720421
[7] Breandan Considine, Jin Guo, and Xujie Si. [n. d.]. Syntax Repair as Idempotent Tensor Completion. ([n. d.]).
[8] Nils Anders Danielsson and Ulf Norell. 2011. Parsing Mix"x Operators. In Implementation and Application of Functional

Languages (Lecture Notes in Computer Science), Sven-Bodo Scholz and Olaf Chitil (Eds.). Springer, Berlin, Heidelberg,
80–99. doi:10.1007/978-3-642-24452-0_5

[9] Luís Eduardo de Souza Amorim and Eelco Visser. 2020. Multi-Purpose Syntax De"nition with SDF3. In Software
Engineering and Formal Methods (Lecture Notes in Computer Science), Frank de Boer and Antonio Cerone (Eds.). Springer
International Publishing, Cham, 1–23. doi:10.1007/978-3-030-58768-0_1

[10] Lukas Diekmann and Laurence Tratt. 2020. Don’t Panic! Better, Fewer, Syntax Errors for LR Parsers. In DROPS-
IDN/v2/Document/10.4230/LIPIcs.ECOOP.2020.6. Schloss-Dagstuhl - Leibniz Zentrum für Informatik. doi:10.4230/LIPIcs.
ECOOP.2020.6

[11] Charles Fischer, Bernard Dion, and Jon Mauney. 1979. A Locally Least-Cost LR-Error Corrector. Technical Report.
University of Wisconsin-Madison Department of Computer Sciences.

[12] C. N. Fischer, D. R. Milton, and S. B. Quiring. 1980. E#cient LL(1) Error Correction and Recovery Using Only Insertions.
Acta Informatica 13, 2 (Feb. 1980), 141–154. doi:10.1007/BF00263990

[13] Robert W. Floyd. 1963. Syntactic Analysis and Operator Precedence. J. ACM 10, 3 (July 1963), 316–333. doi:10.1145/
321172.321179

[14] Susan L. Graham and Steven P. Rhodes. 1975. Practical Syntactic Error Recovery. Commun. ACM 18, 11 (Nov. 1975),
639–650. doi:10.1145/361219.361223

[15] Sheila A. Greibach. 1965. A New Normal-Form Theorem for Context-Free Phrase Structure Grammars. J. ACM 12, 1
(Jan. 1965), 42–52. doi:10.1145/321250.321254

[16] Dick Grune and Ceriel J.H. Jacobs. 2008. Parsing Techniques: A Practical Guide (2 ed.). Springer, New York, NY, USA.
[17] D. S. Henderson and M. R. Levy. 1976. An Extended Operator Precedence Parsing Algorithm. Comput. J. 19, 3 (Jan.

1976), 229–233. doi:10.1093/comjnl/19.3.229
[18] Lennart C.L. Kats and Eelco Visser. 2010. The Spoofax Language Workbench: Rules for Declarative Speci"cation of

Languages and IDEs. In Proceedings of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications. ACM, Reno/Tahoe Nevada USA, 444–463. doi:10.1145/1869459.1869497

[19] Paul Klint and Eelco Visser. [n. d.]. Using Filters for the Disambiguation of Context-free Grammars. ([n. d.]).
[20] Amy J. Ko and Brad A. Myers. 2005. A Framework and Methodology for Studying the Causes of Software Errors in

Programming Systems. Journal of Visual Languages & Computing 16, 1 (Feb. 2005), 41–84. doi:10.1016/j.jvlc.2004.08.003
[21] M. R. Levy. 1975. Complete Operator Precedence. Inform. Process. Lett. 4, 2 (Nov. 1975), 38–40. doi:10.1016/0020-

0190(75)90010-1

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

https://doi.org/10.1016/0304-3975(95)90680-J
https://doi.org/10.1145/360933.360969
https://doi.org/10.1016/j.scico.2015.09.002
https://doi.org/10.1016/j.ipl.2013.01.008
https://arxiv.org/abs/2502.09386
https://doi.org/10.1145/3720421
https://doi.org/10.1007/978-3-642-24452-0_5
https://doi.org/10.1007/978-3-030-58768-0_1
https://doi.org/10.4230/LIPIcs.ECOOP.2020.6
https://doi.org/10.4230/LIPIcs.ECOOP.2020.6
https://doi.org/10.1007/BF00263990
https://doi.org/10.1145/321172.321179
https://doi.org/10.1145/321172.321179
https://doi.org/10.1145/361219.361223
https://doi.org/10.1145/321250.321254
https://doi.org/10.1093/comjnl/19.3.229
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1016/j.jvlc.2004.08.003
https://doi.org/10.1016/0020-0190(75)90010-1
https://doi.org/10.1016/0020-0190(75)90010-1

Syntactic Completions with Material Obligations 404:27

[22] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. 2010. The Scratch Programming
Language and Environment. ACM Transactions on Computing Education 10, 4 (Nov. 2010), 1–15. doi:10.1145/1868358.
1868363

[23] David Moon. 2025. Artifact for Syntactic Completions with Material Obligations. Zenodo. doi:10.5281/zenodo.17007910
[24] David Moon, Andrew Blinn, and Cyrus Omar. 2022. Tylr: A Tiny Tile-Based Structure Editor. In Proceedings of the 7th

ACM SIGPLAN International Workshop on Type-Driven Development. ACM, Ljubljana Slovenia, 28–37. doi:10.1145/
3546196.3550164

[25] David Moon, Andrew Blinn, and Cyrus Omar. 2023. Gradual Structure Editing with Obligations. In 2023 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, Washington, DC, USA, 71–81.
doi:10.1109/VL-HCC57772.2023.00016

[26] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer. 2017. Hazelnut: A Bidirectionally
Typed Structure Editor Calculus. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL ’17). Association for Computing Machinery, New York, NY, USA, 86–99. doi:10.1145/3009837.3009900

[27] Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues, Jonathan Aldrich, and Matthew A. Hammer.
2017. Toward Semantic Foundations for Program Editors. arXiv:1703.08694 [cs]

[28] Young Seok Yoon and Brad A. Myers. 2014. A Longitudinal Study of Programmers’ Backtracking. In 2014 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 101–108. doi:10.1109/VLHCC.2014.
6883030

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 404. Publication date: October 2025.

https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.5281/zenodo.17007910
https://doi.org/10.1145/3546196.3550164
https://doi.org/10.1145/3546196.3550164
https://doi.org/10.1109/VL-HCC57772.2023.00016
https://doi.org/10.1145/3009837.3009900
https://arxiv.org/abs/1703.08694
https://doi.org/10.1109/VLHCC.2014.6883030
https://doi.org/10.1109/VLHCC.2014.6883030

